login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004187 a(n) = 7*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1. 48
0, 1, 7, 48, 329, 2255, 15456, 105937, 726103, 4976784, 34111385, 233802911, 1602508992, 10983760033, 75283811239, 516002918640, 3536736619241, 24241153416047, 166151337293088, 1138818207635569, 7805576116155895, 53500214605455696, 366695926122033977 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Define the sequence T(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}<a_{n+1}/a_n for n >= 0 . A004178 (with initial 0 omitted) is T(1,7).

This is a divisibility sequence.

For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 7's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

a(n) and b(n) := A056854(n) are the proper and improper nonnegative solutions of the Pell equation b(n)^2 - 5*(3*a(n))^2 = +4. see the cross-reference to A056854 below. - Wolfdieter Lang, Jun 26 2013

For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2,3,4,5,6}. - Milan Janjic, Jan 25 2015

The digital root is A253298, which shares its digital root with A253368. - Peter M. Chema, Jul 04 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.

D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993

Zvonko Cerin, Some alternating sums of Lucas numbers, Centr. Eur. J. Math. vol 3 no 1 (2005) 1-13.

R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=7, q=-1.

M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, 2014; http://matinf.pmfbl.org/wp-content/uploads/2015/01/za-arhiv-18.-1.pdf

Tanya Khovanova, Recursive Sequences

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=9.

Index entries for sequences related to Chebyshev polynomials.

Index to divisibility sequences

Index entries for linear recurrences with constant coefficients, signature (7,-1).

FORMULA

G.f.: x/(1-7*x+x^2).

a(n) = F(4*n)/3 = A033888(n)/3, where F=A000045 (the Fibonacci sequence).

a(n) = S(2*n-1, sqrt(9))/sqrt(9) = S(n-1, 7); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.

a(n) = sum(i=0..n-1, C(2*n-1-i, i)*5^(n-i-1) ). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004

[A049685(n-1), a(n)] = [1,5; 1,6]^n * [1,0]. - Gary W. Adamson, Mar 21 2008

a(n) = A167816(4*n). - Reinhard Zumkeller, Nov 13 2009

a(n) = (((7+sqrt(45))/2)^n-((7-sqrt(45))/2)^n)/sqrt(45). - Noureddine Chair, Aug 31 2011

a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*6^k. - Philippe Deléham, Feb 10 2012

a(n) = (A081072(n)/3)-1. - Martin Ettl, Nov 11 2012

Product {n >= 1} (1 + 1/a(n)) = 1/5*(5 + 3*sqrt(5)). - Peter Bala, Dec 23 2012

Product {n >= 2} (1 - 1/a(n)) = 1/14*(5 + 3*sqrt(5)). - Peter Bala, Dec 23 2012

From Peter Bala, Apr 02 2015: (Start)

Sum_{n >= 1} a(n)*x^(2*n) = -A(x)*A(-x), where A(x) = Sum_{n >= 1} Fibonacci(2*n)*x^n.

1 + 5*Sum_{n >= 1} a(n)*x^(2*n) = F(x)*F(-x) = G(x)*G(-x), where F(x) = 1 + A(x) and G(x) = 1 + 5*A(x).

1 + Sum_{n >= 1} a(n)*x^(2*n) = H(x)*H(-x) = I(x)*I(-x), where H(x) = 1 + Sum_{n >= 1} Fibonacci(2*n + 3)*x^n and I(x) = 1 + x + x*Sum_{n >= 1} Fibonacci(2*n - 1)*x^n. (End)

E.g.f.: 2*exp(7*x/2)*sinh(3*sqrt(5)*x/2)/(3*sqrt(5)). - Ilya Gutkovskiy, Jul 03 2016

EXAMPLE

a(2) = 7*a(1) - a(0) = 7*7 - 1 = 48. - Michael B. Porter, Jul 04 2016

MAPLE

seq(combinat:-fibonacci(4*n)/3, n = 0 .. 30); # Robert Israel, Jan 26 2015

MATHEMATICA

LinearRecurrence[{7, -1}, {0, 1}, 30] (* Harvey P. Dale, Jul 13 2011 *)

CoefficientList[Series[x/(1 - 7*x + x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 23 2012 *)

PROG

(Mupad) numlib::fibonacci(4*n)/3 $ n = 0..25; // Zerinvary Lajos, May 09 2008

(Sage) [lucas_number1(n, 7, 1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008

(Sage) [fibonacci(4*n)/3 for n in xrange(0, 21)] # Zerinvary Lajos, May 15 2009

(MAGMA) [Fibonacci(4*n)/3 : n in [0..30]]; // Vincenzo Librandi, Jun 07 2011

(PARI) a(n)=fibonacci(4*n)/3 \\ Charles R Greathouse IV, Mar 09, 2012

(PARI) concat(0, Vec(x/(1-7*x+x^2) + O(x^99))) \\ Altug Alkan, Jul 03 2016

(Maxima)

a[0]:0$ a[1]:1$ a[n]:=7*a[n-1] - a[n-2]$ A004187(n):=a[n]$ makelist(A004187(n), n, 0, 30); /* Martin Ettl, Nov 11 2012 */

(MAGMA) /* By definition: */ [n le 2 select n-1 else 7*Self(n-1)-Self(n-2): n in [1..23]]; // Bruno Berselli, Dec 24 2012

CROSSREFS

Cf. A000027, A001906, A001353, A004254, A001109, A049685, A033888. a(n)=sqrt((A056854(n)^2 - 4)/45).

Second column of array A028412.

Sequence in context: A036829 A164591 A242630 * A180167 A186653 A231378

Adjacent sequences:  A004184 A004185 A004186 * A004188 A004189 A004190

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, R. K. Guy

EXTENSIONS

Entry improved by comments from Michael Somos and Wolfdieter Lang, Aug 02 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 28 02:14 EDT 2017. Contains 284182 sequences.