login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049685 a(n) = L(4n+2)/3, where L=A000032 (the Lucas sequence). 27
1, 6, 41, 281, 1926, 13201, 90481, 620166, 4250681, 29134601, 199691526, 1368706081, 9381251041, 64300051206, 440719107401, 3020733700601, 20704416796806, 141910183877041, 972666870342481 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, sum{k=0..n, binomial(2n-k,k)j^(n-k)}=(-1)^n*U(2n,I*sqrt(j)/2), I=sqrt(-1). - Paul Barry, Mar 13 2005

a(n) = L(n,7), where L is defined as in A108299; see also A033890 for L(n,-7). - Reinhard Zumkeller, Jun 01 2005

Take 7 numbers consisting of 5 ones together with any two successive terms from this sequence. This set has the property that the sum of their squares is 7 times their product. (R. K. Guy, Oct 12 2005.) See also A111216.

Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6} which do not end in 0. - Tanya Khovanova, Jan 10 2007

For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..1193

Tanya Khovanova, Recursive Sequences

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014

Index entries for linear recurrences with constant coefficients, signature (7,-1).

FORMULA

Let q(n, x)=sum(i=0, n, x^(n-i)*binomial(2*n-i, i)); then q(n, 5)=a(n); a(n) = 7a(n-1) - a(n-2). - Benoit Cloitre, Nov 10 2002

From Ralf Stephan, May 29 2004: (Start)

a(n+2) = 7a(n+1) - a(n).

G.f.: (1-x)/(1-7x+x^2).

a(n)a(n+3) = 35 + a(n+1)a(n+2). (End)

a(n) = sum_{k=0..n} binomial(n+k, 2k)5^k. - Paul Barry, Aug 30 2004

If another "1" is inserted at the beginning of the sequence, then A002310, A002320 and A049685 begin with 1, 2; 1, 3; and 1, 1; respectively and satisfy a(n+1) = (a(n)^2+5)/a(n-1). - Graeme McRae, Jan 30 2005

a(n)=(-1)^n*U(2n, I*sqrt(5)/2), U(n, x) Chebyshev polynomial of second kind, I=sqrt(-1). - Paul Barry, Mar 13 2005

[a(n), A004187(n+1)] = [1,5; 1,6]^(n+1) * [1,0]. - Gary W. Adamson, Mar 21 2008

EXAMPLE

a(3) = L(4 * 3 + 2) / 3 = 843 / 3 = 281. - Indranil Ghosh, Feb 06 2017

PROG

(Sage) [lucas_number1(n, 7, 1)-lucas_number1(n-1, 7, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Nov 10 2009

(PARI) a(n)=(fibonacci(4*n+1)+fibonacci(4*n+3))/3 \\ Charles R Greathouse IV, Jun 16 2014

CROSSREFS

Row 7 of array A094954.

Cf. A004187.

Cf. similar sequences listed in A238379.

Sequence in context: A274997 A015551 A227214 * A196954 A122371 A083067

Adjacent sequences:  A049682 A049683 A049684 * A049686 A049687 A049688

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 15:31 EDT 2017. Contains 284273 sequences.