|
|
A002310
|
|
a(n) = 5*a(n-1) - a(n-2).
|
|
5
|
|
|
1, 2, 9, 43, 206, 987, 4729, 22658, 108561, 520147, 2492174, 11940723, 57211441, 274116482, 1313370969, 6292738363, 30150320846, 144458865867, 692144008489, 3316261176578, 15889161874401, 76129548195427, 364758579102734, 1747663347318243
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Together with A002320 these are the two sequences satisfying ( a(n)^2+a(n-1)^2 )/(1 - a(n)a(n-1)) is an integer, in both cases this integer is -5. - Floor van Lamoen, Oct 26 2001
|
|
REFERENCES
|
From a posting to Netnews group sci.math by ksbrown(AT)seanet.com (K. S. Brown) on Aug 15 1996.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/42)*sqrt(21)*(5/2 - (1/2)*sqrt(21))^n - (1/42)*(5/2 + (1/2)*sqrt(21))^n*sqrt(21) + (1/2)*(5/2 + (1/2)*sqrt(21))^n + (1/2)*(5/2 - (1/2)*sqrt(21))^n, with n >= 0. - Paolo P. Lava, Nov 21 2008
|
|
MATHEMATICA
|
LinearRecurrence[{5, -1}, {1, 2}, 25] (* T. D. Noe, Feb 22 2014 *)
|
|
PROG
|
(Haskell)
a002310 n = a002310_list !! n
a002310_list = 1 : 2 :
(zipWith (-) (map (* 5) (tail a002310_list)) a002310_list)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Joe Keane (jgk(AT)jgk.org)
|
|
STATUS
|
approved
|
|
|
|