login
A002320
a(n) = 5*a(n-1) - a(n-2).
6
1, 3, 14, 67, 321, 1538, 7369, 35307, 169166, 810523, 3883449, 18606722, 89150161, 427144083, 2046570254, 9805707187, 46981965681, 225104121218, 1078538640409, 5167589080827, 24759406763726, 118629444737803
OFFSET
0,2
COMMENTS
Together with A002310 these are the two sequences satisfying the requirement that (a(n)^2 + a(n-1)^2)/(1 - a(n)*a(n-1)) be an integer; in both cases this integer is -5. - Floor van Lamoen, Oct 26 2001
REFERENCES
From a posting to Netnews group sci.math by ksbrown(AT)seanet.com (K. S. Brown) on Aug 15 1996.
FORMULA
Sequences A002310, A002320 and A049685 have this in common: each one satisfies a(n+1) = (a(n)^2+5)/a(n-1) - Graeme McRae, Jan 30 2005
G.f.: (1-2x)/(1-5x+x^2). - Philippe Deléham, Nov 16 2008
a(n) = Sum_{k = 0..n} A238731(n,k)*2^k. - _Philippe Deléham, Mar 05 2014
MATHEMATICA
LinearRecurrence[{5, -1}, {1, 3}, 30] (* Harvey P. Dale, Nov 13 2014 *)
PROG
(Haskell)
a002320 n = a002320_list !! n
a002320_list = 1 : 3 :
(zipWith (-) (map (* 5) (tail a002320_list)) a002320_list)
-- Reinhard Zumkeller, Oct 16 2011
CROSSREFS
Cf. A054477.
Sequence in context: A373450 A351068 A345683 * A151323 A354503 A181662
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
STATUS
approved