login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002320
a(n) = 5*a(n-1) - a(n-2).
6
1, 3, 14, 67, 321, 1538, 7369, 35307, 169166, 810523, 3883449, 18606722, 89150161, 427144083, 2046570254, 9805707187, 46981965681, 225104121218, 1078538640409, 5167589080827, 24759406763726, 118629444737803
OFFSET
0,2
COMMENTS
Together with A002310 these are the two sequences satisfying the requirement that (a(n)^2 + a(n-1)^2)/(1 - a(n)*a(n-1)) be an integer; in both cases this integer is -5. - Floor van Lamoen, Oct 26 2001
REFERENCES
From a posting to Netnews group sci.math by ksbrown(AT)seanet.com (K. S. Brown) on Aug 15 1996.
FORMULA
Sequences A002310, A002320 and A049685 have this in common: each one satisfies a(n+1) = (a(n)^2+5)/a(n-1) - Graeme McRae, Jan 30 2005
G.f.: (1-2x)/(1-5x+x^2). - Philippe Deléham, Nov 16 2008
a(n) = Sum_{k = 0..n} A238731(n,k)*2^k. - _Philippe Deléham, Mar 05 2014
MATHEMATICA
LinearRecurrence[{5, -1}, {1, 3}, 30] (* Harvey P. Dale, Nov 13 2014 *)
PROG
(Haskell)
a002320 n = a002320_list !! n
a002320_list = 1 : 3 :
(zipWith (-) (map (* 5) (tail a002320_list)) a002320_list)
-- Reinhard Zumkeller, Oct 16 2011
CROSSREFS
Cf. A054477.
Sequence in context: A373450 A351068 A345683 * A151323 A354503 A181662
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
STATUS
approved