login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002317 Related to Genocchi numbers.
(Formerly M1341 N0514)
2
2, 5, 7, -26, -265, -1351, -5042, -13775, -18817, 70226, 716035, 3650401, 13623482, 37220045, 50843527, -189750626, -1934726305, -9863382151, -36810643322, -100568547815, -137379191137, 512706121226, 5227629760075, 26650854921601 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Denoted by beta'_n by Lehmer.

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.

Index entries for two-way infinite sequences

Index entries for linear recurrences with constant coefficients, signature (6,-11,-6,-1).

FORMULA

G.f.: (2-7*x-x^2-x^3)/(1-6*x+11*x^2+6*x^3+x^4).

a(n) = -2702*a(n-6)-a(n-12).

MATHEMATICA

a[0] = 2; a[1] = 5; a[2] = 7; a[3] = -26; a[n_] := a[n] = -a[n-4] - 6*a[n-3] - 11*a[n-2] + 6*a[n-1]; Table[a[n], {n, 0, 23}] (* Jean-Fran├žois Alcover, May 23 2013 *)

CoefficientList[Series[(2 - 7 x - x^2 - x^3) / (1 - 6 x + 11 x^2 + 6 x^3 + x^4), {x, 0, 40], x] (* Vincenzo Librandi, Jul 21 2013 *)

LinearRecurrence[{6, -11, -6, -1}, {2, 5, 7, -26}, 40] (* Harvey P. Dale, Jun 04 2017 *)

PROG

(PARI) {a(n)=if(n>=0, polcoeff( (2-7*x-x^2-x^3)/(1-6*x+11*x^2+6*x^3+x^4) +x*O(x^n), n), n=-1-n; (-1)^n*polcoeff( (1-x+7*x^2+2*x^3)/(1-6*x+11*x^2+6*x^3+x^4) +x*O(x^n), n) )} /* Michael Somos, Mar 27 2005 */

CROSSREFS

a(n) = (-1)^n*A002316(-1-n).

Sequence in context: A041245 A042159 A071898 * A343596 A137098 A082013

Adjacent sequences:  A002314 A002315 A002316 * A002318 A002319 A002320

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 18:29 EDT 2021. Contains 343652 sequences. (Running on oeis4.)