The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002312 Arc-cotangent reducible numbers or non-Størmer numbers: largest prime factor of k^2 + 1 is less than 2*k. (Formerly M2613 N1033) 8
 3, 7, 8, 13, 17, 18, 21, 30, 31, 32, 38, 41, 43, 46, 47, 50, 55, 57, 68, 70, 72, 73, 75, 76, 83, 91, 93, 98, 99, 100, 105, 111, 112, 117, 119, 122, 123, 128, 129, 132, 133, 142, 144, 155, 157, 162, 172, 173, 174, 177, 182, 183, 185, 187, 189, 191, 192, 193, 200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also numbers such that k^2 + 1 has no primitive divisor, hence (by Everest & Harman, Theorem 1.4) 2.138n < a(n) < 10.6n for large enough n. They conjecture that a(n) ~ cn where c = 1/(1 - log 2) = 3.258.... - Charles R Greathouse IV, Nov 15 2014 REFERENCES Graham Everest and Glyn Harman, On primitive divisors of n^2 + b, in Number Theory and Polynomials (James McKee and Chris Smyth, ed.), London Mathematical Society 2008. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). J. Todd, Table of Arctangents. National Bureau of Standards, Washington, DC, 1951, p. 94. LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Graham Everest and Glyn Harman, On primitive divisors of n^2 + b, arXiv:math/0701234 [math.NT], 2007. E. Kowalski, On the "reducibility" of arctangents of integers, Amer. Math. Monthly, Vol. 111, No. 4 (Apr. 2004), 351-354. Olga Taussky, Sums of Squares, The American Mathematical Monthly, Vol. 77, No. 8 (Oct., 1970), pp. 805-830 (26 pages). See p. 823. J. Todd, A problem on arc tangent relations, Amer. Math. Monthly, 56 (1949), 517-528. MATHEMATICA lst={}; Do[n=m^2+1; p=FactorInteger[n][[ -1, 1]]; If[p<2m, AppendTo[lst, m]], {m, 200}]; lst (* T. D. Noe, Apr 09 2004 *) Select[Range, FactorInteger[#^2+1][[-1, 1]]<2#&] (* Harvey P. Dale, Dec 07 2015 *) PROG (PARI) is(n)=my(f=factor(n^2+1)[, 1]); f[#f]<2*n \\ Charles R Greathouse IV, Nov 14 2014 (Haskell) a002312 n = a002312_list !! (n-1) a002312_list = filter (\x -> 2 * x > a006530 (x ^ 2 + 1)) [1..] -- Reinhard Zumkeller, Jun 12 2015 (Python) from sympy import factorint def ok(n): return max(factorint(n*n + 1)) < 2*n print(list(filter(ok, range(1, 201)))) # Michael S. Branicky, Aug 30 2021 CROSSREFS Cf. A005528. Cf. A006530, A071931 (subsequence). Sequence in context: A244592 A010342 A108873 * A252496 A279517 A106474 Adjacent sequences:  A002309 A002310 A002311 * A002313 A002314 A002315 KEYWORD nonn,nice AUTHOR EXTENSIONS Description and initial term modified Jan 15 1996 More terms from Jason Earls, Jun 14 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 1 09:41 EDT 2022. Contains 354958 sequences. (Running on oeis4.)