OFFSET
1,2
COMMENTS
Also numbers k such that k^2 + 1 has a primitive divisor, hence (by Everest & Harman, Theorem 1.4) 1.1n < a(n) < 1.88n for large enough n. They conjecture that a(n) ~ cn where c = 1/log 2 = 1.4426.... - Charles R Greathouse IV, Nov 15 2014
Named after the Norwegian mathematician and astrophysicist Carl Størmer (1874-1957). - Amiram Eldar, Jun 08 2021
REFERENCES
John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 246.
Graham Everest and Glyn Harman, On primitive divisors of n^2 + b, in Number Theory and Polynomials (James McKee and Chris Smyth, ed.), London Mathematical Society 2008.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
John Todd, Table of Arctangents, National Bureau of Standards, Washington, DC, 1951, p. 2.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Graham Everest and Glyn Harman, On primitive divisors of n^2 + b, arXiv:math/0701234 [math.NT], 2007.
Carl Størmer, Sur l'application de la théorie des nombres entiers complexes à la solution en nombres rationnels x_1 x_2... x_n c_1 c_2... c_n, k de l'équation: c_1 arc tg x_1 + c_2 arc tg x_2 + ... + c_n arc tg x_n = k * Pi/4, Archiv for mathematik og naturvidenskab, Vol. 19, No. 3 (1896), pp. 1-96.
John Todd, A problem on arc tangent relations, Amer. Math. Monthly, 56 (1949), 517-528.
Eric Weisstein's World of Mathematics, Størmer Number.
Wikipedia, Størmer number.
MATHEMATICA
Select[Range[96], FactorInteger[#^2 + 1][[-1, 1]] >= 2 # &] (* Jean-François Alcover, Apr 11 2011 *)
PROG
(PARI) is(n)=my(f=factor(n^2+1)[, 1]); f[#f]>=2*n \\ Charles R Greathouse IV, Nov 14 2014
(Haskell)
a005528 n = a005528_list !! (n-1)
a005528_list = filter (\x -> 2 * x <= a006530 (x ^ 2 + 1)) [1..]
-- Reinhard Zumkeller, Jun 12 2015
(Python)
from sympy import factorint
def ok(n): return max(factorint(n*n + 1)) >= 2*n
print(list(filter(ok, range(1, 97)))) # Michael S. Branicky, Aug 30 2021
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved