OFFSET
1,3
COMMENTS
The sine of 2017 times this number is the near-integer 0.999999999999999978567771261.... - Alonso del Arte, May 03 2013
With the present number r = 2^(1/5) and the golden section phi = A001622 the other (complex) roots of x^5 - 2 are given by x1 = r*exp(2*Pi*i/5) = r*(phi - 1 + sqrt(2 + phi)*i)/2 = r*(A001622 - 1 + A188593*i)/2 = 0.3549673131... + 1.0924770557...*i, x2 = r*exp(4*Pi*i/5) = r*(-phi + sqrt(3 - phi)*i)/2 = r*(-A001622 + A182007*i)/2 = -0.9293164906... + 0.6751879523...*i, and their complex conjugates. - Wolfdieter Lang, Dec 06 2022
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..20000
FORMULA
Equals Product_{k>=0} (1 + (-1)^k/(5*k + 4)). - Amiram Eldar, Jul 25 2020
From Peter Bala, Mar 02 2022: (Start)
Equals (3/2)*Sum_{n >= 0} (1/(5*n+2) - 1/(5*n-3))*binomial(1/5,n). Cf. A002580.
Equals (5/4)*hypergeom([-1/5, -3/5], [7/5], -1). (End)
EXAMPLE
1.148698354997035006798626946777927589443850889097797505513711118493603... - Harry J. Smith, May 12 2009
MATHEMATICA
RealDigits[N[2^(1/5), 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2012 *)
PROG
(PARI) { default(realprecision, 20080); x=2^(1/5); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005531.txt", n, " ", d)); } \\ Harry J. Smith, May 12 2009
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More terms from Olaf Voß, Feb 13 2008
STATUS
approved