login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049683
a(n) = (Lucas(6*n) - 2)/16.
7
0, 1, 20, 361, 6480, 116281, 2086580, 37442161, 671872320, 12056259601, 216340800500, 3882078149401, 69661065888720, 1250017107847561, 22430646875367380, 402501626648765281, 7222598632802407680, 129604273763794572961, 2325654329115499905620
OFFSET
0,3
COMMENTS
This is the r = 20 member of the r-family of sequences S_r(n), n >= 1, defined in A092184 where more information can be found.
LINKS
FORMULA
a(n) = (-2 + (9 + 4*sqrt(5))^n + (9 - 4*sqrt(5))^n)/16. - Ralf Stephan, Apr 14 2004
a(n) = (T(n, 9) - 1)/8 with Chebyshev's polynomials of the first kind evaluated at x = 9: T(n, 9) = A023039(n). Wolfdieter Lang, Oct 18 2004
G.f.: x*(1 + x)/((1 - x)*(1 - 18*x + x^2)) = x*(1 + x)/(1 - 19*x + 19*x^2 - x^3). (from the Stephan link, see A092184).
exp( Sum_{n >= 1} 16*a(n)*x^n/n ) = 1 + 2*Sum_{n >= 1} Fibonacci(6*n)*x^n. - Peter Bala, Jun 03 2016
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3) for n>2. - Colin Barker, Jun 03 2016
MAPLE
with(combinat); seq( (5*fibonacci(3*n)^2 -2*(1-(-1)^n))/16, n=0..30); # G. C. Greubel, Dec 14 2019
MATHEMATICA
LinearRecurrence[{19, -19, 1}, {0, 1, 30}, 20] (* or *) Table[(LucasL[6*n] -2)/16, {n, 0, 30}] (* G. C. Greubel, Dec 02 2017 *)
PROG
(PARI) concat(0, Vec(x*(1+x)/((1-x)*(1-18*x+x^2)) + O(x^30))) \\ Colin Barker, Jun 03 2016
(PARI) vector(31, n, (5*fibonacci(3*n-3)^2 -2*(1+(-1)^n))/16 ) \\ G. C. Greubel, Dec 14 2019
(Magma) [(Lucas(6*n) -2)/16: n in [0..30]]; // G. C. Greubel, Dec 02 2017
(Sage) [(lucas_number2(6*n, 1, -1) -2)/16 for n in (0..30)] # G. C. Greubel, Dec 14 2019
(GAP) List([0..30], n-> (Lucas(1, -1, 6*n)[2] - 2)/16 ); # G. C. Greubel, Dec 14 2019
KEYWORD
nonn,easy
STATUS
approved