login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049684
a(n) = Fibonacci(2n)^2.
23
0, 1, 9, 64, 441, 3025, 20736, 142129, 974169, 6677056, 45765225, 313679521, 2149991424, 14736260449, 101003831721, 692290561600, 4745030099481, 32522920134769, 222915410843904, 1527884955772561, 10472279279564025, 71778070001175616, 491974210728665289
OFFSET
0,3
COMMENTS
This is the r=9 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Apparently, this sequence consists of those nonnegative integers k for which x*(x^2-1)*y*(y^2-1) = k*(k^2-1) has a solution in nonnegative integers x, y. If k = a(n), x = A000045(2*n-1) and y = A000045(2*n+1) are a solution. See A374375 for numbers k*(k^2-1) that can be written as a product of two or more factors of the form x*(x^2-1). - Pontus von Brömssen, Jul 14 2024
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 27.
H. J. H. Tuenter, Fibonacci summation identities arising from Catalan's identity, Fib. Q., 60:4 (2022), 312-319.
LINKS
Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
S. Barbero, U. Cerruti, and N. Murru, On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
Pridon Davlianidze, Problem B-1264, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 58, No. 1 (2020), p. 82; It's All About Catalan, Solution to Problem B-1264, ibid., Vol. 59, No. 1 (2021), pp. 87-88.
E. Kilic, Y. T. Ulutas, and N. Omur, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011) #11.5.6, table 1, k=2.
FORMULA
G.f.: (x+x^2) / ((1-x)*(1-7*x+x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) with n>2, a(0)=0, a(1)=1, a(2)=9.
a(n) = 7*a(n-1) - a(n-2) + 2 = A001906(n)^2.
a(n) = (A000032(4*n)-2)/5. [This is in Koshy's book (reference under A065563) on p. 88, attributed to Lucas 1876.] - Wolfdieter Lang, Aug 27 2012
a(n) = 1/5*(-2 + ( (7+sqrt(45))/2 )^n + ( (7-sqrt(45))/2 )^n). - Ralf Stephan, Apr 14 2004
a(n) = 2*(T(n, 7/2)-1)/5 with twice the Chebyshev polynomials of the first kind evaluated at x=7/2: 2*T(n, 7/2)= A056854(n). - Wolfdieter Lang, Oct 18 2004
a(n) = F(2*n-1)*F(2*n+1)-1, see A064170 - Bruno Berselli, Feb 12 2015
a(n) = Sum_{i=1..n} F(4*i-2) for n>0. - Bruno Berselli, Aug 25 2015
From Peter Bala, Nov 20 2019: (Start)
Sum_{n >= 1} 1/(a(n) + 1) = (sqrt(5) - 1)/2.
Sum_{n >= 1} 1/(a(n) + 4) = (3*sqrt(5) - 2)/16. More generally, it appears that
Sum_{n >= 1} 1/(a(n) + F(2*k+1)^2) = ((2*k+1)*F(2*k+1)*sqrt(5) - Lucas(2*k+1))/ (2*F(2*k+1)*F(4*k+2)) for k = 0,1,2,....
Sum_{n >= 2} 1/(a(n) - 1) = (8 - 3*sqrt(5))/9. (End)
E.g.f.: (1/5)*(-2*exp(x) + exp((16*x)/(1 + sqrt(5))^4) + exp((1/2)*(7 + 3*sqrt(5))*x)). - Stefano Spezia, Nov 23 2019
Product_{n>=2} (1 - 1/a(n)) = phi^2/3, where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021
a(n) = A092521(n-1)+A092521(n). - R. J. Mathar, Nov 22 2024
MATHEMATICA
Join[{a=0, b=1}, Table[c=7*b-1*a+2; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
Fibonacci[Range[0, 40, 2]]^2 (* Harvey P. Dale, Mar 22 2012 *)
Table[Fibonacci[n - 1] Fibonacci[n + 1] - 1, {n, 0, 40, 2}] (* Bruno Berselli, Feb 12 2015 *)
LinearRecurrence[{8, -8, 1}, {0, 1, 9}, 21] (* Ray Chandler, Sep 23 2015 *)
PROG
(PARI) a(n)=fibonacci(2*n)^2
(MuPAD) numlib::fibonacci(2*n)^2 $ n = 0..35; // Zerinvary Lajos, May 13 2008
(Sage) [fibonacci(2*n)^2 for n in range(0, 21)] # Zerinvary Lajos, May 15 2009
CROSSREFS
First differences give A033890.
First differences of A103434.
Bisection of A007598 and A064841.
a(n) = A064170(n+2) - 1 = (1/5) A081070.
Sequence in context: A000846 A357649 A231822 * A037540 A037484 A378566
KEYWORD
nonn,nice,easy
EXTENSIONS
Better description and more terms from Michael Somos
STATUS
approved