login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033890 a(n) = Fibonacci(4*n+2). 33
1, 8, 55, 377, 2584, 17711, 121393, 832040, 5702887, 39088169, 267914296, 1836311903, 12586269025, 86267571272, 591286729879, 4052739537881, 27777890035288, 190392490709135, 1304969544928657, 8944394323791464, 61305790721611591, 420196140727489673 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = S(n,7)+S(n-1,7) = S(2*n,sqrt(9) = 3), S(n,x) = U(n,x/2) are Chebyshev's polynomials of the 2nd kind. Cf. A049310. S(n,7) = A004187(n+1), S(n,3) = A001906(n+1).

(x,y)=(a(n),a(n+1)) are solutions of (x+y)^2/(1+xy)=9, the other solutions are in A033888. - Floor van Lamoen, Dec 10 2001

This sequence consists of the odd-indexed terms of A001906 (whose terms are the values of x such that 5*x^2 + 4 is a square). The even-indexed terms of A001906 are in A033888. Lim. n-> Inf. a(n)/a(n-1) = phi^4 = (7 + 3*Sqrt(5))/2. - Gregory V. Richardson, Oct 13 2002

a(n) = L(n,-7)*(-1)^n, where L is defined as in A108299; see also A049685 for L(n,+7). - Reinhard Zumkeller, Jun 01 2005

General recurrence is a(n)=(a(1)-1)*a(n-1)-a(n-2), a(1)>=4, lim n->infinity a(n)= x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008

Indices of square numbers which are also 12-gonal. - Sture Sjöstedt, Jun 01 2009

a(n) = A167816(4*n+2). - Reinhard Zumkeller, Nov 13 2009

For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with 3's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

If we let b(0) = 0 and, for n >=1, b(n) = A033890(n-1), then the sequence b(n) will be F(4n-2) and the first difference is L(4n) or A056854. F(4n-2) is also the ratio of golden spiral length (rounded to the nearest integer) after n rotations. L(4n) is also the pitch length ratio. See illustration in links. - Kival Ngaokrajang, Nov 03 2013

The aerated sequence (b(n))n>=1 = [1, 0, 8, 0, 55, 0, 377, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -5, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015

REFERENCES

Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.

Merlini, Donatella, and Renzo Sprugnoli. "Arithmetic into geometric progressions through Riordan arrays." Discrete Mathematics 340.2 (2017): 160-174.

LINKS

Table of n, a(n) for n=0..21.

Nathan D. Cahill and Darren A. Narayan, Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants, Fib. Quart. 42, no. 3, Aug. 2004, pp. 216-221. See p. 219.

Tanya Khovanova, Recursive Sequences

Kival Ngaokrajang, Illustration of golden spiral length and pitch ratio

H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume

Index entries for linear recurrences with constant coefficients, signature (7,-1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

G.f.: (1+x)/(1-7*x+x^2). a(n) = 7*a(n-1)-a(n-2), n>1. a(0)=1, a(1)=8.

a(n) = [ [(7+3*Sqrt(5))^n - [(7-3*Sqrt(5))^n] + 2*[(7+3*Sqrt(5))^(n-1) - [(7-3*Sqrt(5))^(n-1)] ] / (3*(2^n)*Sqrt(5)). - Gregory V. Richardson, Oct 13 2002

Let q(n, x)=sum(i=0, n, x^(n-i)*binomial(2*n-i, i)); then (-1)^n*q(n, -9)=a(n). - Benoit Cloitre, Nov 10 2002

Define f[x,s] = s x + Sqrt[(s^2-1)x^2+1]; f[0,s]=0. a(n) = f[a(n-1),7/2] + f[a(n-2),7/2]. - Marcos Carreira, Dec 27 2006

a(n+1) = 8*a(n)-8*a(n-1)+ a(n-2), a(1)=1, a(2)=8, a(3)=55. - Sture Sjöstedt, May 27 2009

a(n)=b such that (-1)^n*Integral_{0..Pi/2} (cos((2*n+1)*x))/(3/2-sin(x)) dx = c + b*log(3). - Francesco Daddi, Aug 01 2011

a(n) = A000045(A016825(n)). - Michel Marcus, Mar 22 2015

a(n) = A001906(2*n+1). - R. J. Mathar, Apr 30 2017

MAPLE

A033890 := proc(n)

    option remember;

    if n <= 1 then

        op(n+1, [1, 8]);

    else

        7*procname(n-1)-procname(n-2) ;

    end if;

end proc: # R. J. Mathar, Apr 30 2017

MATHEMATICA

Table[Fibonacci[4n + 2], {n, 0, 14}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *)

PROG

(PARI) a(n)=fibonacci(4*n+2)

(Sage) [(lucas_number2(n, 7, 1)-lucas_number2(n-1, 7, 1))/5 for n in xrange(1, 21)] # Zerinvary Lajos, Nov 10 2009

(MAGMA) [Fibonacci(4*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011

CROSSREFS

Cf. A001906, A100047.

Sequence in context: A154245 A143420 A075734 * A010924 A010918 A019484

Adjacent sequences:  A033887 A033888 A033889 * A033891 A033892 A033893

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 05:17 EDT 2017. Contains 287074 sequences.