login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010924 Pisot sequence E(8,55), a(n)=[ a(n-1)^2/a(n-2)+1/2 ]. 1
8, 55, 378, 2598, 17856, 122724, 843480, 5797224, 39844224, 273848688, 1882157472, 12936036960, 88909166592, 611071221312, 4199882327424, 28865721292416, 198393621719040, 1363556058068736, 9371698078726656, 64411524820772352, 442699337396994048 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.

Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993..

Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (6, 6).

FORMULA

Conjecture: a(n)=6*a(n-1)+6*a(n-2), n>1; a(0)=8, a(1)=55 . G.f.: (8+7x)/(1-6x-6x^2). - Philippe Deléham, Nov 19 2008

Theorem: a(n) = 6 a(n - 1) + 6 a(n - 2) for n>=2. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016

MATHEMATICA

a[0] = 8; a[1] = 55; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2] + 1/2]; Table[a[n], {n, 0, 20}] (* Michael De Vlieger, Jul 27 2016 *)

PROG

(PARI) pisotE(nmax, a1, a2) = {

  a=vector(nmax); a[1]=a1; a[2]=a2;

  for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));

  a

}

pisotE(50, 8, 55) \\ Colin Barker, Jul 27 2016

CROSSREFS

Sequence in context: A143420 A075734 A033890 * A010918 A019484 A108984

Adjacent sequences:  A010921 A010922 A010923 * A010925 A010926 A010927

KEYWORD

nonn,easy

AUTHOR

Simon Plouffe

EXTENSIONS

"Index entries..." based on conjectured formula deleted by Colin Barker, Jul 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 06:23 EDT 2017. Contains 288777 sequences.