login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010924
Pisot sequence E(8,55), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
1
8, 55, 378, 2598, 17856, 122724, 843480, 5797224, 39844224, 273848688, 1882157472, 12936036960, 88909166592, 611071221312, 4199882327424, 28865721292416, 198393621719040, 1363556058068736, 9371698078726656, 64411524820772352, 442699337396994048
OFFSET
0,1
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
S. B. Ekhad, N. J. A. Sloane, and D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT], 2016.
Tanya Khovanova, Recursive Sequences
FORMULA
Conjecture: a(n) = 6*a(n-1) + 6*a(n-2), n > 1; a(0)=8, a(1)=55; g.f.: (8+7x)/(1-6x-6x^2). - Philippe Deléham, Nov 19 2008
Theorem: a(n) = 6*a(n-1) + 6*a(n-2) for n >= 2. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016
MATHEMATICA
a[0] = 8; a[1] = 55; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2] + 1/2]; Table[a[n], {n, 0, 20}] (* Michael De Vlieger, Jul 27 2016 *)
LinearRecurrence[{6, 6}, {8, 55}, 30] (* Harvey P. Dale, Mar 06 2022 *)
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 8, 55) \\ Colin Barker, Jul 27 2016
CROSSREFS
Sequence in context: A143420 A075734 A033890 * A308687 A010918 A019484
KEYWORD
nonn,easy
AUTHOR
STATUS
approved