OFFSET
0,1
COMMENTS
Matches the sequence A275634 with g.f. ( 3-2*x-2*x^2 ) / ( 1-5*x+2*x^2+3*x^3 ) for n<=9, but is then different. - R. J. Mathar, Feb 11 2016
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
Jeffrey Shallit, Problem B-686, Fib. Quart., 29 (1991), 85.
MAPLE
A010921 := proc(n)
option remember;
if n <= 1 then
op(n+1, [3, 13]) ;
else
a := procname(n-1)^2/procname(n-2) ;
floor(1+a) ;
end if;
end proc: # R. J. Mathar, Feb 11 2016
MATHEMATICA
RecurrenceTable[{a[0]==3, a[1]==13, a[n]==Floor[a[n-1]^2/a[n-2]+1]}, a[n], {n, 25}] (* Harvey P. Dale, Oct 24 2011 *)
PROG
(PARI) A010921(n, a=[3, 13])={for(n=2, if(type(n)=="t_VEC", n[1], n), a=concat(a, a[n]^2\a[n-1]+1)); if(type(n)=="t_VEC", a, a[n+1])} \\ Use A010921([n]) to get the vector [a(0), ..., a(n)] \\ M. F. Hasler, Feb 11 2016
(PARI) pisotS(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1));
a
}
pisotS(50, 3, 13) \\ Colin Barker, Aug 09 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved