login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020515
a(n) = 4^n - 2^n + 1.
14
1, 3, 13, 57, 241, 993, 4033, 16257, 65281, 261633, 1047553, 4192257, 16773121, 67100673, 268419073, 1073709057, 4294901761, 17179738113, 68719214593, 274877382657, 1099510579201, 4398044413953, 17592181850113, 70368735789057, 281474959933441, 1125899873288193
OFFSET
0,2
COMMENTS
6th cyclotomic polynomial evaluated at powers of 2.
Referred to as Kasami-Welch numbers by Aubry et al. (see links). - Jonathan Vos Post, Sep 15 2009
LINKS
Yves Aubry, Gary Mcguire, and Francois Rodier, A few more functions that are not APN infinitely often, arXiv:0909.2304 [math.AG], 2009.
Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1.
FORMULA
From Mohammad K. Azarian, Jan 15 2009: (Start)
G.f.: 1/(1-4*x) - 1/(1-2*x) + 1/(1-x).
E.g.f.: e^(4*x) - e^(2*x) + e^x. (End)
a(n) = A002061(A000079(n)). - Michel Marcus, Apr 06 2016
MAPLE
with(numtheory, cyclotomic):seq(cyclotomic(6, 2**i), i=0..24);
MATHEMATICA
Array[4^# - 2^# + 1 &, 30, 0] (* or *)
Cyclotomic[6, 2^Range[0, 29]] (* Paolo Xausa, Apr 02 2024 *)
LinearRecurrence[{7, -14, 8}, {1, 3, 13}, 30] (* Harvey P. Dale, Aug 24 2024 *)
PROG
(Magma) [4^n - 2^n + 1: n in [0..40]]; // Vincenzo Librandi, Apr 25 2011
(PARI) a(n)=4^n-2^n+1 \\ Charles R Greathouse IV, Jul 02 2013
CROSSREFS
Sequence in context: A095934 A151220 A151221 * A049086 A010921 A275634
KEYWORD
nonn,easy
AUTHOR
STATUS
approved