login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115968
Expansion of 1/(sqrt(1-4*x) + sqrt(1-2*x-3*x^2) - 1).
1
1, 3, 13, 57, 255, 1149, 5201, 23607, 107345, 488721, 2227007, 10154511, 46323507, 211396611, 964966149, 4405717137, 20118308687, 91880092029, 419657355725, 1916914550859, 8756654087981, 40003289475363, 182755724339143
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x)*B(x)/(A(x) +B(x) -A(x)*B(x)) where A(x) is the g.f. of A000984 and B(x) is the g.f. of A002426.
MATHEMATICA
CoefficientList[Series[1/(Sqrt[1-4*x] +Sqrt[1-2*x-3*x^2] -1), {x, 0, 30} ], x] (* G. C. Greubel, Mar 08 2017 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/(sqrt(1-4*x) + sqrt(1-2*x-3*x^2) - 1)) \\ G. C. Greubel, Mar 08 2017
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(Sqrt(1-4*x) + Sqrt(1-2*x-3*x^2) - 1) )); // G. C. Greubel, May 06 2019
(Sage) (1/(sqrt(1-4*x) + sqrt(1-2*x-3*x^2) - 1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 06 2019
CROSSREFS
Sequence in context: A010921 A275634 A163606 * A256939 A005827 A151319
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 03 2006
STATUS
approved