login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115967
Expansion of 1/(2*sqrt(1-2*x-3*x^2) - 1).
3
1, 2, 8, 28, 104, 384, 1428, 5316, 19820, 73948, 276044, 1030796, 3850048, 14382248, 53732172, 200759004, 750134520, 2802980640, 10474015164, 39139487292, 146259311592, 546558514368, 2042458815324, 7632600834924, 28522903136796
OFFSET
0,2
COMMENTS
Row sums of number triangle A116392.
LINKS
FORMULA
a(n) = Sum_{k=0..n} A116392(n,k).
G.f.: A(x)/(2 - A(x)) where A(x) is the g.f. of the central trinomial coefficients A002426.
G.f.: (1 + 2*sqrt(1-2*x-3*x^2))/(3-8*x-12*x^2).
Hankel transform is A000302, A000302(n)=4^n. - Philippe Deléham, Jun 22 2007
G.f.: 1/(2*sqrt(1-2*x-3*x^2) - 1) = 1/(1 - 2*x/G(0)); G(k)= 1 - 2*x/(1 + x/(1 + x/(1 - 2*x/(1 - x/(2 - x/G(k+1)))))); (continued fraction, 6-step). - Sergei N. Gladkovskii, Feb 27 2012
Conjecture: 3*n*a(n) + (-14*n+9)*a(n-1) + (-5*n+3)*a(n-2) + 12*(4*n-9)* a(n-3) + 36*(n-3)*a(n-4) = 0. - R. J. Mathar, Nov 15 2012
a(n) ~ (1/9 + 2/(9*sqrt(13))) * (4+2*sqrt(13))^n / 3^(n-1). - Vaclav Kotesovec, Feb 08 2014
MATHEMATICA
CoefficientList[ Series[1/(2 Sqrt[1-2x-3x^2]-1), {x, 0, 30}], x] (* Robert G. Wilson v, Feb 28 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1 + 2*sqrt(1-2*x-3*x^2))/(3-8*x-12*x^2)) \\ G. C. Greubel, May 06 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1 + 2*Sqrt(1-2*x-3*x^2))/(3-8*x-12*x^2) )); // G. C. Greubel, May 06 2019
(Sage) ((1 + 2*sqrt(1-2*x-3*x^2))/(3-8*x-12*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 06 2019
CROSSREFS
Sequence in context: A056711 A114590 A133592 * A357641 A150714 A292668
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 03 2006
EXTENSIONS
Entry revised by N. J. A. Sloane, Apr 10 2006
STATUS
approved