login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(2*sqrt(1-2*x-3*x^2) - 1).
3

%I #31 Sep 08 2022 08:45:24

%S 1,2,8,28,104,384,1428,5316,19820,73948,276044,1030796,3850048,

%T 14382248,53732172,200759004,750134520,2802980640,10474015164,

%U 39139487292,146259311592,546558514368,2042458815324,7632600834924,28522903136796

%N Expansion of 1/(2*sqrt(1-2*x-3*x^2) - 1).

%C Row sums of number triangle A116392.

%H Vincenzo Librandi, <a href="/A115967/b115967.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = Sum_{k=0..n} A116392(n,k).

%F G.f.: A(x)/(2 - A(x)) where A(x) is the g.f. of the central trinomial coefficients A002426.

%F G.f.: (1 + 2*sqrt(1-2*x-3*x^2))/(3-8*x-12*x^2).

%F Hankel transform is A000302, A000302(n)=4^n. - _Philippe Deléham_, Jun 22 2007

%F G.f.: 1/(2*sqrt(1-2*x-3*x^2) - 1) = 1/(1 - 2*x/G(0)); G(k)= 1 - 2*x/(1 + x/(1 + x/(1 - 2*x/(1 - x/(2 - x/G(k+1)))))); (continued fraction, 6-step). - _Sergei N. Gladkovskii_, Feb 27 2012

%F Conjecture: 3*n*a(n) + (-14*n+9)*a(n-1) + (-5*n+3)*a(n-2) + 12*(4*n-9)* a(n-3) + 36*(n-3)*a(n-4) = 0. - _R. J. Mathar_, Nov 15 2012

%F a(n) ~ (1/9 + 2/(9*sqrt(13))) * (4+2*sqrt(13))^n / 3^(n-1). - _Vaclav Kotesovec_, Feb 08 2014

%t CoefficientList[ Series[1/(2 Sqrt[1-2x-3x^2]-1), {x, 0, 30}], x] (* _Robert G. Wilson v_, Feb 28 2012 *)

%o (PARI) my(x='x+O('x^30)); Vec((1 + 2*sqrt(1-2*x-3*x^2))/(3-8*x-12*x^2)) \\ _G. C. Greubel_, May 06 2019

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1 + 2*Sqrt(1-2*x-3*x^2))/(3-8*x-12*x^2) )); // _G. C. Greubel_, May 06 2019

%o (Sage) ((1 + 2*sqrt(1-2*x-3*x^2))/(3-8*x-12*x^2)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, May 06 2019

%K easy,nonn

%O 0,2

%A _Paul Barry_, Feb 03 2006

%E Entry revised by _N. J. A. Sloane_, Apr 10 2006