login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116392
Riordan array (1/sqrt(1-2*x-3*x^2), 1/sqrt(1-2*x-3*x^2) -1).
5
1, 1, 1, 3, 4, 1, 7, 13, 7, 1, 19, 42, 32, 10, 1, 51, 131, 128, 60, 13, 1, 141, 406, 475, 292, 97, 16, 1, 393, 1247, 1685, 1267, 561, 143, 19, 1, 1107, 3814, 5800, 5112, 2804, 962, 198, 22, 1, 3139, 11623, 19540, 19624, 12748, 5464, 1522, 262, 25, 1, 8953, 35334
OFFSET
0,4
COMMENTS
Triangle, read by rows, given by [1, 2, -1, -1, 2, 1/2, 1/2, 2, -1, -1, 2, 1/2, 1/2, 2, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 11 2020
FORMULA
Number triangle T(n,k) = Sum_{j=0..n} C(n,j)*A116389(j,k).
EXAMPLE
Triangle begins:
1;
1, 1;
3, 4, 1;
7, 13, 7, 1;
19, 42, 32, 10, 1;
51, 131, 128, 60, 13, 1;
MAPLE
# The function RiordanSquare is defined in A321620.
RiordanSquare(1/sqrt(1 - 2*x - 3*x^2), 10); # Peter Luschny, Feb 15 2020
MATHEMATICA
t[n_, k_]:= Sum[(-1)^(k-j)*Binomial[k, j]*Sum[4^r*Binomial[r+(j-1)/2, r]* Binomial[j, n-2*r], {r, 0, Floor[n/2]}], {j, 0, k}]; Table[Sum[Binomial[n, j]*t[j, k], {j, 0, n}] {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 23 2019 *)
PROG
(PARI) t(n, k) = sum(j=0, k, sum(r=0, floor(n/2), (-1)^(k-j)*4^r* binomial(k, j)*binomial(r+(j-1)/2, r)*binomial(j, n-2*r) ));
T(n, k) = sum(j=0, n, binomial(n, j)*t(j, k)); \\ G. C. Greubel, May 23 2019
(Magma) [[(&+[ Binomial(n, m)*(&+[ (&+[ Round((-1)^(k-j)*4^r* Binomial(k, j)*Binomial(j, m-2*r)*Gamma(r+(j+1)/2)/(Factorial(r)*Gamma((j+1)/2))) : r in [0..Floor(n/2)]]) : j in [0..k]]): m in [0..n]]) : k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 23 2019
(Sage) [[sum(binomial(n, m)*sum( sum( (-1)^(k-j)*4^r* binomial(k, j)* binomial(r+(j-1)/2, r)*binomial(j, m-2*r) for r in (0..floor(n/2))) for j in (0..k)) for m in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 23 2019
CROSSREFS
Row sums are A115967. Diagonal sums are A116394.
Cf. A321620.
Sequence in context: A075052 A111516 A210636 * A324559 A174607 A326503
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 12 2006
STATUS
approved