login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116391
Expansion of 1/((1+x)*(sqrt(1-4*x^2)-x)).
2
1, 0, 3, 2, 11, 14, 47, 78, 217, 408, 1039, 2086, 5065, 10560, 24931, 53194, 123403, 267222, 612903, 1340222, 3050679, 6714946, 15205967, 33622158, 75864835, 168275790, 378743151, 841959974, 1891648931, 4211866694, 9450828951
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..k} Sum_{i=0..floor((n-k)/2)} (-1)^(k-j)*C(k,j)*C(i+(j-1)/2,i)*C(j,n-k-2i)*4^i.
Conjecture D-finite with recurrence: n*a(n) +(n)*a(n-1) +3*(-3*n+4)*a(n-2) +3*(-3*n+4)*a(n-3) +20*(n-3)*a(n-4) +20*(n-3)*a(n-5)=0. - R. J. Mathar, Jan 23 2020
a(n) ~ 5^(n/2)/(1+sqrt(5)). - Vaclav Kotesovec, Nov 19 2021
MATHEMATICA
CoefficientList[Series[1/((1+x)(Sqrt[1-4(x^2) ]-x)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 25 2018 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/((1+x)*(sqrt(1-4*x^2)-x))) \\ G. C. Greubel, May 23 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/((1+x)*(Sqrt(1-4*x^2)-x)) )); // G. C. Greubel, May 23 2019
(Sage) (1/((1+x)*(sqrt(1-4*x^2)-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 23 2019
CROSSREFS
Diagonal sums of A116389.
Sequence in context: A297870 A052973 A087956 * A305491 A358589 A087629
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 12 2006
STATUS
approved