login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116394
Expansion of 1/((1+x)*sqrt(1-2*x-3*x^2) - x).
2
1, 1, 4, 11, 33, 100, 305, 937, 2890, 8943, 27741, 86216, 268355, 836297, 2608818, 8144875, 25446229, 79545148, 248780979, 778400001, 2436380402, 7628211951, 23890103153, 74836927720, 234478937321, 734802907841, 2303073316042
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} A116392(n-k,k).
D-finite with recurrence: n*a(n) +2*(-n+1)*a(n-1) +2*(-5*n+6)*a(n-2) +2*(3*n-7)*a(n-3) +2*(17*n-50)*a(n-4) +6*(5*n-17)*a(n-5) +9*(n-4)*a(n-6)=0. - R. J. Mathar, Jan 23 2020
MATHEMATICA
CoefficientList[Series[1/((1+x)*Sqrt[1-2x-3x^2] -x), {x, 0, 30}], x] (* G. C. Greubel, May 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/((1+x)*sqrt(1-2*x-3*x^2) - x)) \\ G. C. Greubel, May 28 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/((1+x)*Sqrt(1-2*x-3*x^2) - x) )); // G. C. Greubel, May 28 2019
(Sage) (1/((1+x)*sqrt(1-2*x-3*x^2) - x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
CROSSREFS
Diagonal sums of number triangle A116392.
Sequence in context: A025191 A282990 A099159 * A259442 A127154 A062460
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 12 2006
STATUS
approved