login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116395 Riordan array (1/sqrt(1-4*x), (1/sqrt(1-4*x)-1)/2). 8
1, 2, 1, 6, 5, 1, 20, 22, 8, 1, 70, 93, 47, 11, 1, 252, 386, 244, 81, 14, 1, 924, 1586, 1186, 500, 124, 17, 1, 3432, 6476, 5536, 2794, 888, 176, 20, 1, 12870, 26333, 25147, 14649, 5615, 1435, 237, 23, 1, 48620, 106762, 112028, 73489, 32714, 10135, 2168, 307, 26, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums are A007854. Diagonal sums are A116396.

Triangle T(n,k), 0 <= k <= n, read by rows given by [2,1,1,1,1,1,1,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 05 2007

Inverse of Riordan array (1/(1+2*x), x*(1+x)/(1+2*x)^2) (see A123876). - Philippe Deléham, Oct 25 2007

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

Joseph Pappe, Digjoy Paul and Anne Schilling, An area-depth symmetric q,t-Catalan polynomial, arXiv:2109.06300 [math.CO], 2021. See Remark 2.4 p. 4.

FORMULA

Number triangle T(n,k) = (4^n/2^k)*Sum_{j=0..k} C(k,j)*C(n+(j-1)/2,n)*(-1)^(k-j).

Sum_{k=0..n} (-1)^k*T(n,k) = A000108(n), Catalan numbers. - Philippe Deléham, Nov 07 2006

T(n,k) = Sum_{j>=0} A039599(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007

Sum_{k=0..n} T(n,k)*x^k = A127053(n), A126985(n), A127016(n), A127017(n), A126987(n), A126986(n), A126982(n), A126984(n), A126983(n), A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively. - Philippe Deléham, Oct 25 2007

EXAMPLE

Triangle begins:

    1;

    2,   1;

    6,   5,   1;

   20,  22,   8,  1;

   70,  93,  47, 11,  1;

  252, 386, 244, 81, 14, 1;

MATHEMATICA

T[n_, k_]:= (4^n/2^k)*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n+(j-1)/2, n], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 28 2019 *)

PROG

(PARI) {T(n, k) = (4^n/2^k)*sum(j=0, k, (-1)^(k-j)*binomial(k, j)* binomial(n+(j-1)/2, n))}; \\ G. C. Greubel, May 28 2019

(MAGMA) [[ Round((4^n/2^k)*(&+[ (-1)^(k-j)*Binomial(k, j)*Gamma(n+(j+1)/2)/(Factorial(n)*Gamma((j+1)/2)) : j in [0..k]])) : k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 28 2019

(Sage) [[(4^n/2^k)*sum( (-1)^(k-j)*binomial(k, j)* binomial(n+(j-1)/2, n) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 28 2019

CROSSREFS

Sequence in context: A193723 A260914 A159965 * A159924 A133367 A179456

Adjacent sequences:  A116392 A116393 A116394 * A116396 A116397 A116398

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Feb 12 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)