OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
FORMULA
G.f.: 2*x/(sqrt(1-2*x-3*x^2)*(sqrt(1-2*x-3*x^2) -1 +2*x +3*x^2)).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(n-k,j-k)*C(j,n-k-j).
Conjecture: n*a(n) + 7*(-n+1)*a(n-1) + 2*(4*n-9)*a(n-2) + (25*n-58)*a(n-3) + (-18*n+65)*a(n-4) + (-52*n+199)*a(n-5) + (-31*n+135)*a(n-6) + 6*(-n+5)*a(n-7) = 0. - R. J. Mathar, Jun 22 2016
MATHEMATICA
Table[Sum[Sum[Binomial[n-k, j-k]*Binomial[j, n-k-j], {j, 0, n-k}], {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, May 23 2019 *)
PROG
(PARI) {a(n) = sum(k=0, n\2, sum(j=0, n-k, binomial(n-k, j-k)*binomial(j, n-k-j)))}; \\ G. C. Greubel, May 23 2019
(Magma) [(&+[ (&+[Binomial(n-k, j-k)*Binomial(j, n-k-j): j in [0..n-k]]) : k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 23 2019
(Sage) [sum( sum(binomial(n-k, j-k)*binomial(j, n-k-j) for j in (0..n)) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, May 23 2019
(GAP) List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-k-j) ))) # G. C. Greubel, May 23 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 12 2006
STATUS
approved