login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116390
Expansion of 1/(2*sqrt(1-4*x^2)-x-1).
2
1, 1, 5, 9, 33, 73, 233, 569, 1693, 4353, 12477, 32985, 92637, 248673, 690549, 1869513, 5158881, 14033161, 38587193, 105246041, 288818305, 788939769, 2162574513, 5912375033, 16196093881, 44300854441, 121311490937
OFFSET
0,3
COMMENTS
Hankel transform is 4^n. - Paul Barry, Jan 19 2011
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..floor(n/2)} (-1)^(k-j)*C(k,j) *C(i+(j-1)/2,i)*C(j,n-2*i)*4^i.
a(n) = Sum_{k=0..floor((n+1)/2)} (C(n,k) - C(n,k-1))*A006130(n-2*k). - Paul Barry, Jan 19 2011
Starting with offset 1, let M = an infinite tridiagonal matrix with [1,0,0,0,...] in the main diagonal and [2,1,1,1,...] in the super and subdiagonals. Let V = vector [1,0,0,0,...]. The sequence = iterates of M*V as to the leftmost column. - Gary W. Adamson, Jun 08 2011
D-finite with recurrence: -3*n*a(n) + 2*n*a(n-1) + (29*n-36)*a(n-2) + 8*(3-n)*a(n-3) + 68*(3-n)*a(n-4)=0. - R. J. Mathar, Aug 09 2012
a(n) ~ (1+2/sqrt(13)) * (1+2*sqrt(13))^n / 3^(n+1). - Vaclav Kotesovec, Feb 03 2014
MATHEMATICA
CoefficientList[Series[1/(2*Sqrt[1-4*x^2]-x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/(2*sqrt(1-4*x^2)-x-1)) \\ G. C. Greubel, May 23 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(2*Sqrt(1-4*x^2)-x-1) )); // G. C. Greubel, May 23 2019
(Sage) (1/(2*sqrt(1-4*x^2)-x-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 23 2019
CROSSREFS
Row sums of number triangle A116389.
Sequence in context: A034435 A270454 A323150 * A028351 A211952 A098640
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 12 2006
STATUS
approved