login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270454
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 163", based on the 5-celled von Neumann neighborhood.
3
1, 5, 9, 33, 25, 85, 49, 161, 81, 261, 121, 385, 169, 533, 225, 705, 289, 901, 361, 1121, 441, 1365, 529, 1633, 625, 1925, 729, 2241, 841, 2581, 961, 2945, 1089, 3333, 1225, 3745, 1369, 4181, 1521, 4641, 1681, 5125, 1849, 5633, 2025, 6165, 2209, 6721, 2401
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 17 2016: (Start)
a(n) = (1+(-1)^n+4*n-2*(-2+(-1)^n)*n^2)/2.
a(n) = n^2+2*n+1 for n even.
a(n) = 3*n^2+2*n for n odd.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>5.
G.f.: (1+5*x+6*x^2+18*x^3+x^4+x^5) / ((1-x)^3*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=163; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A271889 A272447 A034435 * A323150 A116390 A028351
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 17 2016
STATUS
approved