login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052946
Expansion of (1-x)^2/(1-3*x+2*x^3-x^4).
2
1, 1, 4, 10, 29, 80, 224, 624, 1741, 4855, 13541, 37765, 105326, 293751, 819264, 2284905, 6372539, 17772840, 49567974, 138243749, 385558106, 1075311210, 2999014106, 8364169855, 23327445251, 65059618751, 181449530649
OFFSET
0,3
FORMULA
G.f.: (1 - x)^2/(1 - 3*x + 2*x^3 - x^4).
a(n) = 3*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = Sum_{alpha=RootOf(-1+3*z-2*z^3+z^4)} (1/643)*(79 + 128*alpha - 133*alpha^2 + 40*alpha^3)*alpha^(-1-n).
MAPLE
spec := [S, {S=Sequence(Prod(Union(Prod(Sequence(Z), Sequence(Z)), Z), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
seq(coeff(series((1-x)^2/(1-3*x+2*x^3-x^4), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 21 2019
MATHEMATICA
LinearRecurrence[{3, 0, -2, 1}, {1, 1, 4, 10}, 30] (* G. C. Greubel, Oct 21 2019 *)
CoefficientList[Series[(1-x)^2/(1-3x+2x^3-x^4), {x, 0, 30}], x] (* Harvey P. Dale, Aug 30 2020 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x)^2/(1-3*x+2*x^3-x^4)) \\ G. C. Greubel, Oct 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)^2/(1-3*x+2*x^3-x^4) )); // G. C. Greubel, Oct 21 2019
(Sage)
def A052946_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x)^2/(1-3*x+2*x^3-x^4)).list()
A052946_list(30) # G. C. Greubel, Oct 21 2019
(GAP) a:=[1, 1, 4, 10];; for n in [5..30] do a[n]:=3*a[n-1]-2*a[n-3]+a[n-4]; od; a; # G. C. Greubel, Oct 21 2019
CROSSREFS
Sequence in context: A377824 A321344 A329156 * A026152 A025179 A116388
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved