login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233347
G.f. satisfies: 1-x = Sum_{n>=0} (-x)^n*A(x)^(n mod 3).
1
1, 1, 1, 4, 10, 29, 86, 266, 842, 2720, 8924, 29661, 99654, 337902, 1154814, 3973848, 13756956, 47878802, 167425436, 587954324, 2072659700, 7331934464, 26018377112, 92596633117, 330415480966, 1181911210006, 4237288522870, 15222929711704, 54796317032956, 197601339619494
OFFSET
0,4
LINKS
FORMULA
G.f. satisfies: (1 + x^3*A(x)^3) / (1 + x*A(x)) = (1-x)*(1+x^3).
G.f.: (1 - sqrt(4*(1-x)*(1+x^3) - 3))/(2*x).
a(n) ~ sqrt(1-3*r+r^3) / (2*sqrt(Pi)*n^(3/2)*r^(n+1)), where r = (1-2*sqrt(1/4 + 3^(1/3)/2^(2/3)) + sqrt(2-2*6^(1/3) + 7/sqrt(1/4 + 3^(1/3)/2^(2/3))))/4 = 0.2634705866719... is the root of the equation r^4-r^3+r=1/4. - Vaclav Kotesovec, Dec 08 2013
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 10*x^4 + 29*x^5 + 86*x^6 + 266*x^7 +...
such that, by definition,
1-x = 1 - x*A(x) + x^2*A(x)^2 - x^3 + x^4*A(x) - x^5*A(x)^2 + x^6 - x^7*A(x) + x^8*A(x)^2 - x^9 + x^10*A(x) - x^11*A(x)^2 + ....
MATHEMATICA
CoefficientList[Series[(1 - Sqrt[4*(1-x)*(1+x^3) - 3])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 08 2013 *)
PROG
(PARI) /* By Definition: */
{a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=Vec(sum(n=1, #A, (-x)^n*Ser(A)^(n%3)))[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Closed Form: */
{a(n)=local(A=1+x); polcoeff((1 - sqrt(4*(1-x)*(1+x^3) - 3 +x^2*O(x^n)))/(2*x), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A116388 A221420 A212262 * A264158 A152808 A243601
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2013
STATUS
approved