login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233350
Prime(k), where k is such that (1 + Sum_{i=1..k} prime(i)^13) / k is an integer.
1
2, 3, 7, 13, 29, 37, 239, 373, 769, 1531, 2011, 5003, 11939, 14557, 14629, 37361, 204361, 252431, 289193, 1403189, 2201623, 2299541, 6287173, 6734179, 29155393, 29235133, 103558313, 186122161, 531627839, 623579347, 4245274987, 6718076401, 16495027789, 39151049879, 90009559583, 225919038109
OFFSET
1,1
COMMENTS
a(47) > 458158058915101. - Bruce Garner, May 05 2021
EXAMPLE
a(4) = 13, because 13 is the 6th prime and the sum of the first 6 primes^13+1 = 337495930052232 when divided by 6 equals 56249321675372 which is an integer.
MATHEMATICA
t = {}; sm = 1; Do[sm = sm + Prime[n]^13; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^13); s==0 \\ Charles R Greathouse IV, Nov 30 2013
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
Sequence in context: A175248 A099361 A234003 * A233557 A296415 A113823
KEYWORD
nonn
AUTHOR
Robert Price, Dec 07 2013
STATUS
approved