login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234003
Prime(n), where n is such that (1+Sum_{i=1..n} prime(i)^5) / n is an integer.
1
2, 3, 7, 13, 29, 37, 79, 271, 907, 2447, 3301, 4969, 9241, 26111, 27941, 38039, 58603, 90071, 243469, 617579, 849143, 6994363, 10661177, 68783413, 122137849, 131221879, 187987693, 194658539, 283102597, 329015387, 1682202323, 5230637117, 5461627177, 32315983207, 69900989237, 154638658121, 227225999443, 306462968363, 349585319959, 1128669425707, 1245067407509
OFFSET
1,1
COMMENTS
a(52) > 1005368767096627. - Bruce Garner, Jun 05 2021
a(53) > 4193009611262897. - Bruce Garner, Mar 28 2022
EXAMPLE
a(4) = 13, because 13 is the 6th prime and the sum of the first 6 primes^5 + 1 = 552552 when divided by 6 equals 92092 which is an integer.
MATHEMATICA
t = {}; sm = 1; Do[sm = sm + Prime[n]^5; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^5); s==0 \\ Charles R Greathouse IV, Nov 30 2013
CROSSREFS
Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Sequence in context: A055003 A175248 A099361 * A233350 A233557 A296415
KEYWORD
nonn
AUTHOR
Robert Price, Dec 18 2013
STATUS
approved