login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233557
Prime(k), where k is such that (1 + Sum_{i=1..k} prime(i)^17) / k is an integer.
1
2, 3, 7, 13, 29, 37, 641, 853, 2143, 18059, 26417, 34283, 48539, 122597, 146539, 254831, 8304757, 19534651, 26528699, 32820527, 47825363, 82199141, 124088207, 312168289, 409464961, 464174839, 1167927947, 1393486043, 1725361103, 1879982849, 4346448019, 7331901341, 7451088943, 27036461983, 39662532977, 113692593373, 449281234057
OFFSET
1,1
COMMENTS
a(45) > 491952295618219. - Bruce Garner, Jun 02 2021
LINKS
Bruce Garner, Table of n, a(n) for n = 1..44 (first 37 terms from Robert Price, terms 38..39 from Karl-Heinz Hofmann)
EXAMPLE
13 is a term because 13 is the 6th prime and the sum of the first 6 primes^17+1 = 9156096341463343272 when divided by 6 equals 1526016056910557212 which is an integer.
MATHEMATICA
t = {}; sm = 1; Do[sm = sm + Prime[n]^17; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
With[{nn=175*10^8}, Prime[#]&/@Select[Thread[{Range[nn], Accumulate[ Prime[ Range[nn]]^17]}], Divisible[#[[2]]+1, #[[1]]]&][[All, 1]]] (* The program will take a long time to run *) (* Harvey P. Dale, Apr 13 2018 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^17); s==0 \\ Charles R Greathouse IV, Nov 30 2013
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
Sequence in context: A099361 A234003 A233350 * A296415 A113823 A113843
KEYWORD
nonn
AUTHOR
Robert Price, Dec 12 2013
STATUS
approved