login
A233523
Prime(n), where n is such that (1+sum_{i=1..n} prime(i)) / n is an integer.
91
2, 3, 13, 29, 71, 79, 107, 907, 3491, 4967, 7853, 61223, 80051, 81547, 90901, 211811, 381629, 1990007, 3220793, 4749637, 6725027, 6784937, 34463699, 143691323, 185831033, 213609173, 285336497, 442634651, 911588849, 953122843, 1548789581, 2153787017
OFFSET
1,1
COMMENTS
a(50) > 3475385758524527. - Bruce Garner, Jun 05 2021
LINKS
Bruce Garner, Table of n, a(n) for n = 1..49 (first 43 terms from Robert Price)
EXAMPLE
a(3) = 13, because 13 is the 6th prime and the sum of the first 6 primes+1 = 42 when divided by 6 equals 7 which is an integer.
MATHEMATICA
t = {}; sm = 1; Do[sm = sm + Prime[n]; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)); s==0 \\ Charles R Greathouse IV, Nov 30 2013
CROSSREFS
Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Sequence in context: A141861 A215379 A215375 * A256712 A092175 A317898
KEYWORD
nonn
AUTHOR
Robert Price, Dec 15 2013
STATUS
approved