login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233522
Expansion of 1 / (1 - x - x^4 + x^9) in powers of x.
3
1, 1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 16, 22, 29, 38, 50, 67, 89, 118, 156, 207, 274, 363, 481, 638, 845, 1119, 1482, 1964, 2602, 3447, 4566, 6049, 8013, 10615, 14062, 18629, 24678, 32691, 43306, 57369, 75998, 100676, 133367, 176674, 234043, 310041, 410717
OFFSET
0,5
FORMULA
a(n) = a(n-1) + a(n-4) - a(n-9) for all n in Z.
a(n) - a(n-1) = A017830(n).
G.f.: 1 / ((1 - x) * (1 + x) * (1 + x^2) * (1 - x - x^5)).
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ If[ n >= 0, 1 / (1 - x - x^4 + x^9), -x^9 / (1 - x^5 - x^8 + x^9)], {x, 0, Abs@n}];
PROG
(PARI) {a(n) = if( n>=0, polcoeff( 1 / (1 - x - x^4 + x^9) + x * O(x^n), n), polcoeff( -x^9 / (1 - x^5 - x^8 + x^9) + x * O(x^-n), -n))};
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/( 1-x-x^4+x^9))); // G. C. Greubel, Aug 08 2018
CROSSREFS
Cf. A017830.
Sequence in context: A120149 A117597 A241336 * A112639 A375185 A290137
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Dec 11 2013
STATUS
approved