login
A241336
Number of partitions p of n including ceiling(mean(p)) as a part.
6
0, 1, 2, 3, 4, 5, 7, 9, 12, 16, 22, 28, 39, 49, 66, 87, 112, 141, 190, 234, 307, 384, 482, 609, 783, 937, 1187, 1482, 1829, 2224, 2794, 3332, 4145, 5013, 6080, 7438, 9052, 10587, 12971, 15739, 18852, 22162, 26886, 31645, 38189, 45143, 52984, 63329, 75824
OFFSET
0,3
FORMULA
a(n) + A241337(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 7 partitions: 6, 33, 321, 222, 2211, 21111, 111111.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]]], {n, 0, z}] (* A241334 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]]], {n, 0, z}] (* A241335 *)
Table[Count[f[n], p_ /; MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241336 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241337 *)
Table[Count[f[n], p_ /; MemberQ[p, Round[Mean[p]]]], {n, 0, z}] (* A241338 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Round[Mean[p]]]], {n, 0, z}] (* A241339 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 20 2014
STATUS
approved