login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241312 Number of partitions p of n into distinct parts, including floor(mean(p)). 16
0, 1, 1, 2, 1, 2, 2, 3, 2, 4, 4, 5, 5, 7, 7, 11, 10, 13, 15, 19, 19, 25, 28, 34, 37, 44, 49, 61, 66, 80, 87, 102, 114, 134, 156, 174, 189, 221, 252, 294, 321, 369, 404, 461, 521, 586, 663, 759, 822, 918, 1021, 1156, 1305, 1472, 1621, 1803, 1949, 2202, 2469 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..58.

FORMULA

a(n) + A241313(n) = A000009(n) for n >= 1.

EXAMPLE

a(10) counts these 4 partitions:  {10}, {5,4,1}, {5,3,2}, {4,3,2,1}.

MATHEMATICA

z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];

    Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]]], {n, 0, z}] (* A241312 *)

    Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]]], {n, 0, z}] (* A241313 *)

    Table[Count[f[n], p_ /; MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241314 *)

    Table[Count[f[n], p_ /; ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241315 *)

    Table[Count[f[n], p_ /; MemberQ[p, Round[Mean[p]]]], {n, 0, z}] (* A241316 *)

    Table[Count[f[n], p_ /; ! MemberQ[p, Round[Mean[p]]]], {n, 0, ] (* A241317 *)

CROSSREFS

Cf. A241313, A241314, A241315, A241318, A000009.

Sequence in context: A127687 A024156 A241316 * A075989 A304714 A085432

Adjacent sequences:  A241309 A241310 A241311 * A241313 A241314 A241315

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 15:56 EDT 2020. Contains 333306 sequences. (Running on oeis4.)