login
A304714
Number of connected strict integer partitions of n.
47
1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 5, 2, 5, 5, 6, 5, 10, 6, 12, 12, 13, 14, 21, 17, 23, 26, 30, 31, 46, 38, 51, 55, 61, 70, 87, 85, 102, 116, 128, 138, 171, 169, 204, 225, 245, 272, 319, 334, 383, 429, 464, 515, 593, 629, 715, 790, 861, 950, 1082
OFFSET
1,6
COMMENTS
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.
EXAMPLE
The a(19) = 6 strict integer partitions are (19), (9,6,4), (10,5,4), (10,6,3), (12,4,3), (8,6,3,2). Taking the normalized prime factors of each part (see A112798, A302242), we have the following connected multiset multisystems.
(19): {{8}}
(9,6,4): {{2,2},{1,2},{1,1}}
(10,5,4): {{1,3},{3},{1,1}}
(10,6,3): {{1,3},{1,2},{2}}
(12,4,3): {{1,1,2},{1,1},{2}}
(8,6,3,2): {{1,1,1},{1,2},{2},{1}}
MATHEMATICA
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c==={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[zsm[#]]===1&]], {n, 60}]
CROSSREFS
The Heinz numbers of these partitions are given by A328513.
Sequence in context: A241316 A241312 A075989 * A085432 A029169 A202090
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2018
STATUS
approved