login
A241317
Number of partitions p of n into distinct parts, including round(mean(p)).
6
0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 15, 17, 22, 25, 31, 37, 45, 51, 62, 73, 87, 98, 116, 133, 159, 182, 211, 241, 276, 322, 369, 419, 479, 539, 622, 705, 807, 909, 1022, 1163, 1310, 1483, 1681, 1880, 2119, 2365, 2637, 2947, 3314, 3756, 4185, 4644
OFFSET
0,7
FORMULA
a(n) + A241316(n) = A000009(n) for n >= 1.
EXAMPLE
a(10) counts these 6 partitions: 91, 82, 73, 721, 64, 631.
MATHEMATICA
z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]]], {n, 0, z}] (* A241312 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]]], {n, 0, z}] (* A241313 *)
Table[Count[f[n], p_ /; MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241314 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241315 *)
Table[Count[f[n], p_ /; MemberQ[p, Round[Mean[p]]]], {n, 0, z}] (* A241316 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Round[Mean[p]]]], {n, 0, ] (* A241317 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 19 2014
STATUS
approved