login
A001996
Number of partitions of n into parts 2, 3, 4, 5, 6, 7.
(Formerly M0306 N0112)
13
1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 17, 23, 26, 33, 37, 47, 52, 64, 72, 86, 96, 115, 127, 149, 166, 192, 212, 245, 269, 307, 338, 382, 419, 472, 515, 576, 629, 699, 760, 843, 913, 1007, 1091, 1197, 1293, 1416, 1525, 1663, 1790, 1945, 2088, 2265, 2426
OFFSET
0,5
COMMENTS
Also, Molien series for invariants of finite Coxeter group A_6. The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i). - N. J. A. Sloane, Jan 11 2016
Cayley tabulates the coefficients in the expansion of H = 1 / ((1 - x^2) * (1 - x^4) * ... * (1 - x^14)) with even indices 0, 2, ..., 142.
REFERENCES
A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419.
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, American Journal of Mathematics, 2 (1879), pp.71-84. See pp.77-78.
A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, -1, -2, -2, -1, 0, 2, 2, 2, 2, 0, -1, -2, -2, -1, 0, 0, 1, 1, 1, 0, -1).
FORMULA
G.f.: 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)).
Euler transform of length 7 sequence [ 0, 1, 1, 1, 1, 1, 1]. - Michael Somos, Apr 23 2014
EXAMPLE
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
G.f. = 1 + q^2 + q^6 + 2*q^8 + 2*q^10 + 4*q^12 + 4*q^14 + 6*q^16 + ...
MATHEMATICA
nn = 102; t = CoefficientList[Series[1/((1 - x^4)*(1 - x^6)*(1 - x^8)*(1 - x^10)*(1 - x^12)*(1 - x^14)), {x, 0, nn}], x]; t = Take[t, {1, nn, 2}]
CROSSREFS
Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Sequence in context: A241317 A357456 A185224 * A317084 A122134 A035940
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Feb 09 2000
STATUS
approved