The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A233862 Prime(k), where k is such that (1 + Sum_{i=1..k} prime(i)^2) / k is an integer. 91
 2, 3, 5, 7, 13, 23, 37, 41, 101, 107, 197, 317, 1033, 2029, 2357, 2473, 2879, 5987, 6173, 35437, 56369, 81769, 195691, 199457, 793187, 850027, 1062931, 1840453, 2998421, 4217771, 6200923, 9914351, 10153807, 13563889, 18878099, 60767923, 118825361, 170244929 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(51) > 1428199016921. a(67) > 2407033812270611. - Bruce Garner, May 05 2021 LINKS Bruce Garner, Table of n, a(n) for n = 1..66 (first 50 terms from Robert Price) EXAMPLE a(5) = 13, because 13 is the 6th prime and the sum of the first 6 primes^2+1 = 378 when divided by 6 equals 63 which is an integer. MATHEMATICA t = {}; sm = 1; Do[sm = sm + Prime[n]^2; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) Module[{nn=9600000}, Prime[#]&/@Transpose[Select[Thread[{Range[nn], 1+ Accumulate[ Prime[Range[nn]]^2]}], IntegerQ[Last[#]/First[#]]&]][[1]]] (* Harvey P. Dale, Sep 09 2014 *) PROG (PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^2); s==0 \\ Charles R Greathouse IV, Nov 30 2013 CROSSREFS Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. Sequence in context: A179921 A211073 A182315 * A235394 A126092 A132394 Adjacent sequences:  A233859 A233860 A233861 * A233863 A233864 A233865 KEYWORD nonn AUTHOR Robert Price, Dec 16 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 10:25 EST 2022. Contains 350477 sequences. (Running on oeis4.)