OFFSET
1,1
COMMENTS
a(10) and a(11) were found by Giovanni Resta (Nov 15 2004). He states that there are no other terms for primes p < 4011201392413. See link to Prime Puzzles, Puzzle 31 below.
a(13) > (sum of first pi(2*10^13) primes)/pi(2*10^13). - Donovan Johnson, Aug 23 2010
a(16) > 2688482385366706. - Bruce Garner, Mar 06 2021
a(17) > 125237452139872271. - Paul W. Dyson, Sep 26 2022
LINKS
Carlos Rivera, Puzzle 31.- The Average Prime number, APN(k) = S(Pk)/k, The Prime Puzzles & Problems Connection.
Eric Weisstein's World of Mathematics, Prime Sums.
EXAMPLE
38 is average of first k = 23 primes; 110 (k = 53); 3066 (k = 853); 60020 (k = 11869).
MATHEMATICA
a=0; lst={}; Do[p=Prime[n]; a+=p; If[a/n==IntegerPart[a/n], AppendTo[lst, a/n]], {n, 10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 05 2009 *)
Module[{nn=10^6, prs}, prs=Prime[Range[nn]]; Select[Table[Mean[Take[prs, n]], {n, nn}], IntegerQ]] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Jun 12 2024 *)
PROG
(PARI) s=n=0; forprime(p=2, 1e9, if((s+=p)%n++==0, print1(s/n", "))) \\ Charles R Greathouse IV, Nov 07 2014
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of David W. Wilson, Jun 23 2007
a(10)-a(11) from Giovanni Resta via Ray Chandler, Jul 19 2010
a(12) from Donovan Johnson, Aug 23 2010
a(13) from Robert Price, Mar 17 2013
a(14)-a(15) from Bruce Garner, Mar 06 2021
a(16) from Paul W. Dyson, Sep 26 2022
STATUS
approved