login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A233859
T(n,k)=Number of (n+1)X(k+1) 0..7 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 59 (59 maximizes T(1,1))
7
216, 1040, 1040, 4640, 4824, 4640, 22592, 22472, 22472, 22592, 104576, 129728, 106304, 129728, 104576, 511232, 699984, 716800, 716800, 699984, 511232, 2416128, 4332592, 4319616, 5783176, 4319616, 4332592, 2416128, 11843584, 24793848
OFFSET
1,1
COMMENTS
Table starts
.......216.......1040.........4640........22592.......104576.......511232
......1040.......4824........22472.......129728.......699984......4332592
......4640......22472.......106304.......716800......4319616.....34000600
.....22592.....129728.......716800......5783176.....41245344....408524804
....104576.....699984......4319616.....41245344....337818824...4191443728
....511232....4332592.....34000600....408524804...4191443728..63517858688
...2416128...24793848....226756256...3305571808..40029477624.748312618740
..11843584..156146264...1873475872..36165120612.580040050696
..56662016..917982376..13046763360.311162540132
.278233088.5792726088.108927798728
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 14]
k=2: [order 68]
EXAMPLE
Some solutions for n=3 k=4
..0..4..1..4..5....4..1..2..1..4....4..5..2..5..2....4..6..1..6..6
..5..2..6..2..0....6..2..6..2..6....4..0..4..0..4....1..2..2..2..7
..0..4..1..4..5....6..7..4..1..2....5..2..5..4..5....2..6..1..6..4
..5..2..6..2..0....2..6..2..6..2....0..4..0..4..0....1..2..2..2..1
CROSSREFS
Sequence in context: A124581 A177493 A162142 * A233853 A245993 A233980
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 16 2013
STATUS
approved