login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124581
Abundant cubes.
2
216, 1000, 1728, 2744, 5832, 8000, 10648, 13824, 17576, 21952, 27000, 46656, 64000, 74088, 85184, 110592, 125000, 140608, 157464, 175616, 216000, 287496, 314432, 343000, 373248, 438976, 474552, 512000, 592704, 681472, 729000, 778688, 884736
OFFSET
1,1
COMMENTS
Abundant cubes can't be prime powers for obvious reasons. Hence all these numbers can be represented as a^3*b^3 for some coprime a and b. a^3*b^3 is the magic product of the following magic 3 X 3 multiplicative square: [a*b^2, 1, a^2*b; a^2, ab, b^2; b, a^2*b^2; a].
EXAMPLE
216 is in the sequence because 216=6^3 and the sum of the proper divisors of 216 is 108+72+54+...+3+2+1 > 216.
MAPLE
isA005101 := proc(n) if numtheory[sigma](n) > 2*n then RETURN(true) ; else RETURN(false) ; fi ; end : for n from 1 to 120 do if isA005101(n^3) then printf("%d, ", n^3) ; fi ; od ; # R. J. Mathar, Jan 07 2007
with(numtheory): a:=proc(n) if sigma(n^3)>2*n^3 then n^3 else fi end: seq(a(n), n=1..110); # Emeric Deutsch, Jan 10 2007
MATHEMATICA
Select[Range[100]^3, DivisorSigma[1, #] > 2# &] (* Amiram Eldar, Aug 14 2019 *)
CROSSREFS
Intersection of A000578 and A005101.
Cf. A111029 = magic products of 3 X 3 multiplicative magic squares.
Sequence in context: A250137 A109399 A111029 * A177493 A162142 A233859
KEYWORD
nonn
AUTHOR
Tanya Khovanova, Dec 27 2006
EXTENSIONS
More terms from R. J. Mathar and Emeric Deutsch, Jan 07 2007
STATUS
approved