login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Abundant cubes.
2

%I #15 Aug 14 2019 08:27:15

%S 216,1000,1728,2744,5832,8000,10648,13824,17576,21952,27000,46656,

%T 64000,74088,85184,110592,125000,140608,157464,175616,216000,287496,

%U 314432,343000,373248,438976,474552,512000,592704,681472,729000,778688,884736

%N Abundant cubes.

%C Abundant cubes can't be prime powers for obvious reasons. Hence all these numbers can be represented as a^3*b^3 for some coprime a and b. a^3*b^3 is the magic product of the following magic 3 X 3 multiplicative square: [a*b^2, 1, a^2*b; a^2, ab, b^2; b, a^2*b^2; a].

%H Amiram Eldar, <a href="/A124581/b124581.txt">Table of n, a(n) for n = 1..10000</a>

%H Christian Boyer, <a href="http://www.multimagie.com/English/Multiplicative.htm">The smallest possible multiplicative magic squares</a>.

%e 216 is in the sequence because 216=6^3 and the sum of the proper divisors of 216 is 108+72+54+...+3+2+1 > 216.

%p isA005101 := proc(n) if numtheory[sigma](n) > 2*n then RETURN(true) ; else RETURN(false) ; fi ; end : for n from 1 to 120 do if isA005101(n^3) then printf("%d,",n^3) ; fi ; od ; # _R. J. Mathar_, Jan 07 2007

%p with(numtheory): a:=proc(n) if sigma(n^3)>2*n^3 then n^3 else fi end: seq(a(n),n=1..110); # _Emeric Deutsch_, Jan 10 2007

%t Select[Range[100]^3, DivisorSigma[1, #] > 2# &] (* _Amiram Eldar_, Aug 14 2019 *)

%Y Intersection of A000578 and A005101.

%Y Cf. A111029 = magic products of 3 X 3 multiplicative magic squares.

%K nonn

%O 1,1

%A _Tanya Khovanova_, Dec 27 2006

%E More terms from _R. J. Mathar_ and _Emeric Deutsch_, Jan 07 2007