login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256712
Primes prime(n) such that prime(2*n) - n is prime.
0
2, 3, 13, 29, 89, 113, 199, 229, 263, 281, 317, 337, 349, 541, 593, 673, 683, 827, 857, 911, 929, 971, 997, 1069, 1109, 1291, 1399, 1481, 1657, 1693, 1733, 1759, 1783, 1877, 1907, 1931, 2003, 2053, 2089, 2377, 2543, 2551, 2777, 2903, 3011, 3023, 3041, 3089, 3181, 3251, 3361, 3617, 3671
OFFSET
1,1
COMMENTS
Primes prime(n) such that A031215(n) - n is prime.
EXAMPLE
3 is in this sequence because 3 is prime(2) and prime(2*2) - 2 = prime(4)- 2 = 7 - 2 = 5 is prime.
MAPLE
seq(`if`(isprime(ithprime(2*n)-n), ithprime(n), NULL), n=1..1000); # Robert Israel, Apr 13 2015
MATHEMATICA
Prime[Select[Range[555], PrimeQ[Prime[2*#]-#]&]] (* Ivan N. Ianakiev, Apr 14 2015 *)
PROG
(Magma) [NthPrime(n): n in [1..550] | IsPrime(NthPrime(2*n)-n)];
(PARI) for(n=1, 10^3, if(isprime(prime(2*n)-n), print1(prime(n), ", "))) \\ Derek Orr, Apr 14 2015
CROSSREFS
Cf. A031215.
Sequence in context: A215379 A215375 A233523 * A092175 A317898 A317187
KEYWORD
nonn,easy
AUTHOR
STATUS
approved