login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A233555
Prime(m), where m is such that (Sum_{i=1..m} prime(i)^17) / m is an integer.
0
2, 5724469, 10534369, 16784723, 33330911, 189781037, 8418091991, 58605633953, 109388266843, 448366797199, 1056238372873, 24603683667221, 86982253895059, 100316149840769, 164029709175817, 542295448805641, 685217940914237, 1701962315686097, 23064173255594491
OFFSET
1,1
COMMENTS
a(18) > 1005368767096627. - Bruce Garner, Aug 30 2021
a(19) > 1701962315686097. - Bruce Garner, Jan 07 2022
FORMULA
a(n) = prime(A131277(n)).
EXAMPLE
a(1) = 2, because 2 is the 1st prime and the sum of the first 1 primes^17 = 131072 when divided by 1 equals 131072 which is an integer.
MATHEMATICA
t = {}; sm = 0; Do[sm = sm + Prime[n]^17; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^17); s==0 \\ Charles R Greathouse IV, Nov 30 2013
(PARI) S=n=0; forprime(p=1, , (S+=p^17)%n++||print1(p", ")) \\ M. F. Hasler, Dec 01 2013
CROSSREFS
Cf. A085450 (smallest m > 1 that divide Sum_{k=1..m} prime(k)^n).
Sequence in context: A273354 A352126 A157991 * A273729 A324440 A121390
KEYWORD
nonn
AUTHOR
Robert Price, Dec 12 2013
EXTENSIONS
a(12) from Bruce Garner, Mar 02 2021
a(13) from Bruce Garner, Mar 17 2021
a(14) from Bruce Garner, Mar 30 2021
a(15) from Bruce Garner, Apr 14 2021
a(16) from Bruce Garner, Jun 30 2021
a(17) from Bruce Garner, Aug 30 2021
a(18) from Bruce Garner, Jan 07 2022
a(19) from Paul W. Dyson, Sep 15 2023
STATUS
approved