login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157991
Number of n-colorings of the Levi Graph.
2
0, 0, 2, 5514234, 2883040542828, 40804091270010980, 60520556880158419470, 21901769993996949991662, 3041658168762971457654584, 211558602330274827202235208, 8728129703136293355833601210, 239394223814453881755898003490, 4731013227415233819791988908772
OFFSET
0,3
COMMENTS
The Levi Graph has 30 nodes and 45 edges.
LINKS
Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.
Weisstein, Eric W. "Levi Graph".
Weisstein, Eric W. "Chromatic Polynomial".
Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
FORMULA
a(n) = n^30 -45*n^29 + ... (see Maple program).
MAPLE
a:= n-> n^30 -45*n^29 +990*n^28 -14190*n^27 +148995*n^26 -1221759*n^25 +8145060*n^24 -45379530*n^23 +215549775*n^22 -886099793*n^21 +3189425574*n^20 -10143911580*n^19 +28714411485*n^18 -72754429695*n^17 +165716335841*n^16 -340379666835*n^15 +631649660595*n^14 -1059695941005*n^13 +1606062587021*n^12 -2193946401123*n^11 +2690139367971*n^10 -2941870019235*n^9 +2842645627185*n^8 -2395149923590*n^7 +1727156333706*n^6 -1037572912125*n^5 +498710054365*n^4 -179700698265*n^3 +43072277935*n^2 -5133307729*n:
seq(a(n), n=0..30);
CROSSREFS
Sequence in context: A158347 A273354 A352126 * A233555 A273729 A324440
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Mar 10 2009
STATUS
approved