login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-colorings of the Levi Graph.
2

%I #13 Jan 31 2024 12:02:49

%S 0,0,2,5514234,2883040542828,40804091270010980,60520556880158419470,

%T 21901769993996949991662,3041658168762971457654584,

%U 211558602330274827202235208,8728129703136293355833601210,239394223814453881755898003490,4731013227415233819791988908772

%N Number of n-colorings of the Levi Graph.

%C The Levi Graph has 30 nodes and 45 edges.

%H Alois P. Heinz, <a href="/A157991/b157991.txt">Table of n, a(n) for n = 0..1000</a>

%H Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: <a href="http://dx.doi.org/10.1088/1367-2630/11/2/023001">10.1088/1367-2630/11/2/023001</a>.

%H Weisstein, Eric W. "<a href="http://mathworld.wolfram.com/LeviGraph.html">Levi Graph</a>".

%H Weisstein, Eric W. "<a href="http://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>".

%H <a href="/index/Rec#order_31">Index entries for linear recurrences with constant coefficients</a>, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).

%F a(n) = n^30 -45*n^29 + ... (see Maple program).

%p a:= n-> n^30 -45*n^29 +990*n^28 -14190*n^27 +148995*n^26 -1221759*n^25 +8145060*n^24 -45379530*n^23 +215549775*n^22 -886099793*n^21 +3189425574*n^20 -10143911580*n^19 +28714411485*n^18 -72754429695*n^17 +165716335841*n^16 -340379666835*n^15 +631649660595*n^14 -1059695941005*n^13 +1606062587021*n^12 -2193946401123*n^11 +2690139367971*n^10 -2941870019235*n^9 +2842645627185*n^8 -2395149923590*n^7 +1727156333706*n^6 -1037572912125*n^5 +498710054365*n^4 -179700698265*n^3 +43072277935*n^2 -5133307729*n:

%p seq(a(n), n=0..30);

%K nonn,easy

%O 0,3

%A _Alois P. Heinz_, Mar 10 2009