OFFSET
0,4
COMMENTS
The Coxeter Graph is a nonhamiltonian cubic symmetric graph and has 28 vertices and 42 edges.
All terms are multiples of 336.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Marc Timme, Frank van Bussel, Denny Fliegner, and Sebastian Stolzenberg, Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions, New Journal of Physics, Volume 11, February 2009.
Eric Weisstein's World of Mathematics, Chromatic Polynomial
Eric Weisstein's World of Mathematics, Coxeter Graph
Index entries for linear recurrences with constant coefficients, signature (29, -406, 3654, -23751, 118755, -475020, 1560780, -4292145, 10015005, -20030010, 34597290, -51895935, 67863915, -77558760, 77558760, -67863915, 51895935, -34597290, 20030010, -10015005, 4292145, -1560780, 475020, -118755, 23751, -3654, 406, -29, 1).
FORMULA
a(n) = n^28 -42*n^27 + ... (see Maple program).
MAPLE
a:= n-> n^28 -42*n^27 +861*n^26 -11480*n^25 +111930*n^24 -850668*n^23 +5245762*n^22 -26977443*n^21 +118014274*n^20 -445705967*n^19 +1469857872*n^18 -4270042980*n^17 +11001634164*n^16 -25266720456*n^15 +51908523754*n^14 -95589692821*n^13 +157862673577*n^12 -233517066853*n^11 +308423840605*n^10 -361701500512*n^9 +373419294214*n^8 -335133871598*n^7 +256750369239*n^6 -163506050813*n^5 +83144968151*n^4 -31635019987*n^3 +7989854148*n^2 -1000876932*n:
seq(a(n), n=0..30);
MATHEMATICA
With[{poly = ChromaticPolynomial[GraphData["CoxeterGraph"]]}, Array[poly, 20]] (* Eric W. Weisstein, May 04 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Mar 10 2009
STATUS
approved