

A157994


Number of trees with n edges equipped with a cyclic order on their edges, i.e., number of orbits of the action of Z/nZ on the set of edgelabeled trees of size n, given by cyclically permuting the labels.


0



1, 1, 2, 8, 44, 411, 4682, 66524, 1111134, 21437357, 469070942, 11488238992, 311505013052, 9267596377239, 300239975166840, 10523614185609344, 396861212733968144, 16024522976922760209, 689852631578947368422
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..19.


FORMULA

a(1) = 1, a(2) = 1, a(n) = (1/n)*((n+1)^{n2} + sum_{k=1}^{n1} (n+1)^{gcd(n,k)1}) for n > 2


PROG

(Sage) [1, 1] + [((n+1)^(n2) + sum([(n+1)^(gcd(n, k) 1) for k in [1..n1]]))/n for n in [3..20]]


CROSSREFS

A007830, A000169
Sequence in context: A336545 A126101 A308478 * A002500 A002833 A348107
Adjacent sequences: A157991 A157992 A157993 * A157995 A157996 A157997


KEYWORD

easy,nonn


AUTHOR

Nikos Apostolakis, Mar 10 2009


EXTENSIONS

Corrected the formula and Sage code  Nikos Apostolakis, Feb 27 2011.


STATUS

approved



