login
A157994
Number of trees with n edges equipped with a cyclic order on their edges, i.e., number of orbits of the action of Z/nZ on the set of edge-labeled trees of size n, given by cyclically permuting the labels.
0
1, 1, 2, 8, 44, 411, 4682, 66524, 1111134, 21437357, 469070942, 11488238992, 311505013052, 9267596377239, 300239975166840, 10523614185609344, 396861212733968144, 16024522976922760209, 689852631578947368422
OFFSET
1,3
FORMULA
a(1) = 1, a(2) = 1, a(n) = (1/n)*((n+1)^{n-2} + sum_{k=1}^{n-1} (n+1)^{gcd(n,k)-1}) for n > 2
PROG
(Sage) [1, 1] + [((n+1)^(n-2) + sum([(n+1)^(gcd(n, k) -1) for k in [1..n-1]]))/n for n in [3..20]]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Nikos Apostolakis, Mar 10 2009
EXTENSIONS
Corrected the formula and Sage code - Nikos Apostolakis, Feb 27 2011.
STATUS
approved