login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157996
Primes which are sum of 1 and two nonconsecutive primes p1 and p2, p2 - p1 > 2.
2
11, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
OFFSET
1,1
COMMENTS
Conjecture: for n > 1, a(n) = prime(n+5). - Charles R Greathouse IV, Mar 12 2012
A185154(n) is the smallest prime q, such that A049084(q) + 1 < A049084(a(n) - q - 1). - Reinhard Zumkeller, Mar 12 2012
LINKS
EXAMPLE
11=3+7+1, 17=5+11+1, 19=5+13+1, ...
MATHEMATICA
lst={}; Do[p0=Prime[n]; Do[px=Prime[n+k]; If[PrimeQ[a=p0+px+1], AppendTo[lst, a]], {k, 2, 2*5!}], {n, 6!}]; Take[Union[lst], 222]
PROG
(Haskell)
a157996 n = a157996_list !! (n-1)
a157996_list = map (+ 1) $ filter f a006093_list where
f x = g $ takeWhile (< x) a065091_list where
g [] = False
g [_] = False
g (p:ps@(_:qs)) = (x - p) `elem` qs || g ps
-- Reinhard Zumkeller, Mar 12 2012
(PARI) is(n)=if(!isprime(n), return(0)); my(p=3, q=5); forprime(r=7, n-4, if(isprime(n-1-r) && n-1-r <= p, return(1)); p=q; q=r); 0 \\ Charles R Greathouse IV, Nov 05 2015
KEYWORD
nonn
AUTHOR
STATUS
approved