Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 12 2017 19:41:15
%S 11,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
%T 107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,
%U 197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283
%N Primes which are sum of 1 and two nonconsecutive primes p1 and p2, p2 - p1 > 2.
%C Conjecture: for n > 1, a(n) = prime(n+5). - _Charles R Greathouse IV_, Mar 12 2012
%C A185154(n) is the smallest prime q, such that A049084(q) + 1 < A049084(a(n) - q - 1). - _Reinhard Zumkeller_, Mar 12 2012
%H Reinhard Zumkeller, <a href="/A157996/b157996.txt">Table of n, a(n) for n = 1..10000</a>
%e 11=3+7+1, 17=5+11+1, 19=5+13+1, ...
%t lst={};Do[p0=Prime[n];Do[px=Prime[n+k];If[PrimeQ[a=p0+px+1],AppendTo[lst,a]],{k,2,2*5!}],{n,6!}];Take[Union[lst],222]
%o (Haskell)
%o a157996 n = a157996_list !! (n-1)
%o a157996_list = map (+ 1) $ filter f a006093_list where
%o f x = g $ takeWhile (< x) a065091_list where
%o g [] = False
%o g [_] = False
%o g (p:ps@(_:qs)) = (x - p) `elem` qs || g ps
%o -- _Reinhard Zumkeller_, Mar 12 2012
%o (PARI) is(n)=if(!isprime(n),return(0)); my(p=3,q=5); forprime(r=7,n-4, if(isprime(n-1-r) && n-1-r <= p, return(1)); p=q; q=r); 0 \\ _Charles R Greathouse IV_, Nov 05 2015
%Y Cf. A000040, A076805, A005385, A092738, A118071, A157995, A065091, A006093.
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Mar 11 2009