login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157990 a(n) = 288*n + 1. 1
289, 577, 865, 1153, 1441, 1729, 2017, 2305, 2593, 2881, 3169, 3457, 3745, 4033, 4321, 4609, 4897, 5185, 5473, 5761, 6049, 6337, 6625, 6913, 7201, 7489, 7777, 8065, 8353, 8641, 8929, 9217, 9505, 9793, 10081, 10369, 10657, 10945, 11233, 11521 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (288*n + 1)^2 - (144*n^2 + n)*24^2 = 1 can be written as a(n)^2 - (A017522(n) + n)*24^2 = 1. - Vincenzo Librandi, Feb 10 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(12^2*t+1)).

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

G.f.: x*(289-x)/(1-x)^2. - Vincenzo Librandi, Feb 10 2012

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 10 2012

MATHEMATICA

LinearRecurrence[{2, -1}, {289, 577}, 50] (* Vincenzo Librandi, Feb 10 2012 *)

PROG

(MAGMA) I:=[289, 577]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 10 2012

(PARI) for(n=1, 50, print1(288*n + 1", ")); \\ Vincenzo Librandi, Feb 10 2012

CROSSREFS

Cf. A017522.

Sequence in context: A287934 A152852 A156572 * A261111 A218766 A188186

Adjacent sequences:  A157987 A157988 A157989 * A157991 A157992 A157993

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 10 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 17:41 EDT 2021. Contains 346346 sequences. (Running on oeis4.)