login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157990
a(n) = 288*n + 1.
1
289, 577, 865, 1153, 1441, 1729, 2017, 2305, 2593, 2881, 3169, 3457, 3745, 4033, 4321, 4609, 4897, 5185, 5473, 5761, 6049, 6337, 6625, 6913, 7201, 7489, 7777, 8065, 8353, 8641, 8929, 9217, 9505, 9793, 10081, 10369, 10657, 10945, 11233, 11521
OFFSET
1,1
COMMENTS
The identity (288*n + 1)^2 - (144*n^2 + n)*24^2 = 1 can be written as a(n)^2 - (A017522(n) + n)*24^2 = 1. - Vincenzo Librandi, Feb 10 2012
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(12^2*t+1)).
FORMULA
G.f.: x*(289-x)/(1-x)^2. - Vincenzo Librandi, Feb 10 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 10 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {289, 577}, 50] (* Vincenzo Librandi, Feb 10 2012 *)
PROG
(Magma) I:=[289, 577]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 10 2012
(PARI) for(n=1, 50, print1(288*n + 1", ")); \\ Vincenzo Librandi, Feb 10 2012
CROSSREFS
Cf. A017522.
Sequence in context: A287934 A152852 A156572 * A261111 A218766 A188186
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 10 2009
STATUS
approved